Хатунцева Ольга Николаевна, доктор физико-математических наук

Учёная степень
Доктор физико-математических наук

Место работы
Московский физико-технический институт (национальный исследовательский университет)

Публикации, документы и материалы

Наименование Тип Год
Учет производства энтропии в уравнении Лиувилля и вывод из него «модифицированной» системы уравнений Навье-Стокса Статья 2024
Учет производства энтропии в системе уравнений Навье-Стокса при описании турбулентного течения вязкой сжимаемой теплопроводной жидкости Статья 2023
О дополнительных «многомасштабных» критериях подобия для экспериментальной отработки изделий аэрокосмической техники Статья 2023
О «детерминизации» стохастических процессов при увеличении в системе степеней свободы Статья 2023
Обобщенное аналитическое решение плоской задачи Пуазейля для турбулентного режима течения несжимаемой жидкости Статья 2022
О нахождении обобщенного аналитического решения плоской задачи Куэтта для турбулентного режима течения жидкости Статья 2022
О нахождении обобщенного аналитического решения задачи Хагена-Пуазейля для турбулентного режима течения жидкости Статья 2021
О стохастических свойствах динамического хаоса в системах автономных дифференциальных уравнений, типа системы Лоренца Статья 2020
Определение критического числа Рейнольдса ламинарно-турбулентного перехода в плоской задаче Пуазейля на основе метода «разрывных функций» Статья 2019
Аналитический метод определения профиля скорости турбулентного течения жидкости в плоской задаче Пуазейля Статья 2019
Аналитический метод определения профиля скорости турбулентного течения жидкости в плоской задаче Куэтта Статья 2019
О механизме возникновения в стохастических процессах гауссовских распределений случайной величины с «тяжелыми» степенными «хвостами» Статья 2018
О нахождении критического числа Рейнольдса ламинарно-турбулентного перехода в задаче Хагена-Пуазейля Статья 2018
Об учете влияния стохастических возмущений на решение уравнений Навье-Стокса в задаче Хагена-Пуазейля Статья 2018

Редакция проекта с благодарностью принимает сообщения об обнаруженных ошибках, а также любые уточнения, дополнения и предложения.