УДК 621.396

Методика оценивания характеристик диаграммы направленности ультразвукового локатора в режиме синтезирования апертуры антенны

Звонарев В.В.*, Мороз А.В.**, Шерстюк А.В***³

Военно-космическая академия имени А.Ф. Можайского ул. Ждановская, 13, Санкт-Петербург, 197198, Россия *e-mail: zvonarevvitalii@yandex.ru **e-mail: moroz-anatolij@yandex.ru ***e-mail: av47b@yandex.ru

Статья поступила 19.04.2019

Аннотация

В статье рассмотрены вопросы моделирования параметров диаграммы направленности ультразвукового локатора в режиме синтезирования апертуры антенны. Представлены результаты оценивания характеристик ДН ультразвукового приемопередающего устройства, полученные с помощью предложенного методического подхода. Проведена экспериментальная проверка результатов с использованием ультразвукового полигона.

Ключевые слова: радиолокатор с синтезированной апертурой антенны (PCA), диаграмма направленности, цифровая обработка сигналов, ультразвуковой локатор в режиме синтезирования апертуры, антенная решетка.

Введение

В настоящее время для получения изображений земной поверхности

используются радиолокаторы с синтезированной апертурой антенны (PCA) авиационного и космического базирования. Создание PCA предполагает проектирование и разработку соответствующих макетов, реализующих основные режимы функционирования образца или его составных частей [1, 2, 3].

Построение макета РСА трудно реализуемо. Основной проблемой является высокая стоимость макета РСА, обусловленная дороговизной как аппаратуры, работающей в сверхвысокочастотном диапазоне, так и механических устройств [4].

В этой связи весьма интересным может оказаться подход, при котором в интересах макетирования используется не радиодиапазон, а диапазон ультразвуковых волн. Это обусловлено тем, что создание макета локатора в режиме синтезирования апертуры антенны в ультразвуковом диапазоне длин волн требует несоизмеримо меньших финансовых и материальных затрат [5, 6, 7].

Ввиду сходства эффектов дифракции, интерференции, волновых свойств при распространении акустических и электромагнитных волн макет локатора в ультразвуковом диапазоне длин волн позволяет с высокой точностью и достоверностью моделировать основные процессы, происходящие в реальном устройстве [8].

Основными целями разработки макета ультразвукового локатора в режиме синтезирования апертуры (УЛСА) антенны являются: повышение эффективности проведения научных исследований, совершенствование технологий цифровой обработки сигналов, подтверждение достоверности разрабатываемого математического аппарата формирования локационного изображения в различных режимах функционирования.

Однако, несмотря на имеющиеся преимущества в стоимости разработки УЛСА антенны, целесообразно до создания образца локатора выполнить моделирование процессов функционирования его элементов с целью получения значений характеристик диаграммы направленности (ДН) [9, 10, 11].

Для предварительной проработки технических решений при разработке УЛСА в статье предложена методика оценивания характеристик ДН УЛСА антенны. Значения данных характеристик получены с использованием программных пакетов для проведения инженерных расчетов в программе Mathcad.

Таким образом, новизна предлагаемой методики заключается в том, что до проектирования и разработки макетов, реализующих основные режимы работы образца или его составных частей, выполняется математическое моделирование процессов функционирования элементов разрабатываемого образца.

Постановка задачи

Для сравнения ДН УЛСА, полученной в программе Mathcad, с характеристикой ультразвукового локатора в составе ультразвукового полигона (УЗП), разработанного в ВКА имени А.Ф.Можайского [12], необходимо [13, 14]:

вычислить нормированную амплитудную характеристику направленности
 одиночного полуволнового линейного симметричного электрического вибратора;

вычислить множитель антенной решетки (амплитудную характеристику направленности антенной решетки);

– построить ненормированную амплитудную ДН антенной решетки;

– построить нормированную ДН антенной решетки.

Для решения указанных задач необходимо использовать следующие исходные данные:

1. Вид ДН передающего ультразвукового датчика (УЗД) «МА40S4S» – $f_{mp}(\theta, \alpha)$ согласно технической документации [15] (рис.1). Датчик указанного типа «МА40S4S» используется в качестве излучающего элемента в составе УЗП.

Рис. 1. Диаграмма направленности ультразвукового передающего датчика «MA40S4S»

2. Характеристики антенной решетки УЛСА:

– длина волны 8 мм;

– размер излучающего элемента 0,5 λ;

– расстояние между излучателями 1 λ ; 0,31 λ ;

– количество элементов в синтезируемой антенной решетке 2; 600 (количество элементов антенной решетки 600 при расстоянии между излучателями 0,31 λ соответствует длине синтезирования решетки 1,54 м, реализованной в УЗП).

Формирование диаграммы направленности ультразвукового локатора в режиме синтезирования апертуры антенны

Формирование ДН УЛСА антенны выполнялось в три этапа, в соответствии с разработанной методикой, структура которой представлена на рисунке 2.

Этап 1. Построение ДН УЗД «МА40S4S» с использованием нормированной амплитудной характеристики направленности одиночного симметричного электрического вибратора [16, 17].

Когда значение ширины ДН одиночного симметричного электрического вибратора ($\Delta\theta_1$), представленного на рисунке 1, построение ДН УЗД «MA40S4S» – $f_1(\theta, \alpha)$) будет равно значению ширины ДН УЗД «MA40S4S» ($\Delta\theta_{\rm Tp}$), представленного на рисунке 1, построение ДН УЗД «MA40S4S» – $f_1(\theta, \alpha)$ (рисунки 3 и 4) считается законченным.

Чтоб ширина ДН одиночного симметричного электрического вибратора была равна ширине ДН УЗД «MA40S4S» ($\Delta \theta_1 = \Delta \theta_{\rm Tp}$), представленного на рисунке 1, изменялось значение геометрического размера вибратора (L).

Рис. 3. Диаграмма направленности УЗД «МА40S4S» в полярной системе координат

Рис. 4. Диаграмма направленности УЗД «МА40S4S» в прямоугольной системе координат

Результаты проведенных расчетов нормированной амплитудной характеристики направленности одиночного излучателя использовались на 2 этапе для формирования ДН УЛСА.

Этап 2. Построение ненормированной амплитудной ДН синтезированной антенной решетки по результатам выполнения расчетов [17, 18, 19]:

амплитудной характеристики направленности антенной решетки;

 нормированной амплитудной характеристики направленности одиночного полуволнового линейного симметричного электрического вибратора.

Этап 3. Построение ДН УЛСА антенны, где $M = max(F(\theta))$.

На рис. 5а и 5б представлены нормированная амплитудная ДН антенной решетки в полярной и прямоугольной системе координат для следующих условий: $n = 2; d_1 = 1\lambda.$

Рис. 5а. Нормированная амплитудная диаграмма направленности антенной решетки в полярной системе координат (при *n* = 2)

Рис. 5б. Нормированная амплитудная диаграмма направленности антенной решетки в прямоугольной системе координат (при *n* = 2)

На рис. 6 представлена нормированная амплитудная ДН антенной решетки в полярной системе координат для следующих условий: $n = 600; d_1 = 2,5 \times 10^{-3}$ м.

Рис. 6. Нормированная амплитудная диаграмма направленности антенной решетки в полярной системе координат (при *n* = 600) в азимутальной плоскости

Предложенная методика позволяет, варьируя исходные данные: длину волны, размер излучающего элемента, расстояние между излучателями, количество элементов в синтезируемой антенной решетке, получить оценки характеристик ДН синтезированной антенной решетки.

Экспериментальная проверка расчетной характеристики ультразвукового локатора в режиме синтезирования апертуры антенны

С целью проверки полученных значений характеристик ДН УЛСА антенны проводится сравнение расчетных оценок ДН синтезированной антенной решетки

с соответствующими экспериментальными данными, полученными при аналогичных условиях наблюдения, но с использованием УЗП.

В качестве зондирующего сигнала использовался сигнал с линейной частотной модуляцией (ЛЧМ) с полосой 10 кГц. Авторами работы [20] показано, что разрешение по азимуту в системах с синтезированной апертурой антенны, определяемое длиной волны излучения ($\lambda = 8$ мм) и максимальным размером синтезируемой апертуры антенны, реализуемой в условиях работы УЗП (Lc = 1,54 м), составило $\delta_x = 0,84$ см.

Оценивание ширины ДН УЛСА по уровню 0,707 производилось в соответствии с методикой [18]. При длине волны $\lambda = 8$ мм, количестве элементов антенной решетки n = 600 и расстоянии между излучателями $d_1 = 2,5 \times 10^{-3}$ м ширина ДН синтезированной антенной решетки в прямоугольной системе координат в азимутальной плоскости составила 0,841 *см* ($\Delta \theta = 0,841$ *см*).

На рисунке 8а представлена ДН УЛСА (при n = 600), полученная на основе использования разработанной методики, представленной на рисунке 2, а на рисунке 8б представлено сечение окрестности максимума функции отклика с оценкой разрешения по азимуту при использовании ЛЧМ сигнала, полученное с использованием ультразвукового локатора в составе УЗП [20].

Таким образом, разработанная методика позволяет оценивать характеристики УЛСА в части ширины основного лепестка синтезированной ДН с высокой точностью (порядка 1%). Выполненные расчеты подтверждают целесообразность использования представленной методики, которая в дальнейшем требует апробации и в радиодиапазоне.

Заключение

1. Использование указанного подхода позволит уточнить модель оценивания погрешностей радиолокационного канала разрабатываемого макета реальной РСА

и подойти к решению задачи радиометрической калибровки сквозного тракта системы еще до начала его изготовления.

2. Полученный опыт целесообразно использовать при разработке алгоритмов управления ДН перспективных локаторов с синтезированной апертурой уже на этапе лабораторной отработки.

3. В отличие от существующих методик, использование предлагаемой методики позволяет уточнить модель оценивания погрешностей радиолокационного канала макета радиолокатора с синтезированной апертурой антенны и решать задачи радиометрической калибровки сквозного тракта системы еще до начала его изготовления.

4. Расхождения экспериментальных и модельных данных в области боковых лепестков обусловлены: многолучевостью распространения ультразвуковых волн, нестабильностью характеристик среды распространения, влиянием собственных шумов приемного тракта, неоптимальностью системы цифровой обработки, влияние которых на величину расхождения требует дополнительного изучения.

Библиографический список

 Сахно И.В., Ткачев Е.А., Гаврилов Д.А., Симонов А.Б., Козлов А.В., Иванов А.А.
 Корреляционная обработка сложных сигналов с использованием свойств фрактальных отображений // Радиопромышленность. 2010. № 2. С. 68 – 76.

2. Козлов А.В., Косынкин А.И., Мороз А.В., Сахно И.В., Соколов С.М., Пименов В.Ф., Шерстюк А.В. Моделирование многопозиционной радиолокационной системы

с синтезированной апертурой антенны с использованием ультразвукового диапазона длин волн // Труды XXVIII Всероссийского симпозиума «Радиолокационное исследование природных сред» (Санкт-Петербург, 16 – 17апреля 2013). – СПб.: ВКА имени А.Ф. Можайского, 2013. Т. 1. № 10. С. 419 - 429.

3. Миронов А.Н., Цветков К.Ю., Ковальский А.А., Пальгунов В.Ю. Методика обоснования возможности и условий продления назначенных показателей срока службы антенных систем наземных станций измерительного комплекса космодрома // Труды МАИ. 2018. № 99. URL: http://trudymai.ru/published.php?ID=91968

4. Дашевский О.Ю., Невеженко Е.С. Исследование эффективности программноалгоритмических средств синтезирования апертуры в пассивной радиолокации на тестовых и реальных сигналах // Автометрия. 2009. № 5. С. 70 – 71.

5. Сахно И.В., Симонов А.Б, Ткачев Е.А. Способ формирования наборов ортогональных псевдослучайных последовательностей с использованием войств фрактальных отображений и устройство его реализующее. Патент RU 2006143688. Бюлл. 16, 10.06.2006.

6. Шкапский Г.И., Курнина Д.В., Смолин В.П. Масштабное физическое ультразвуковое моделирование, его программная и аппаратная сторона // VII международная научно-практическая конференция «Технические науки – от теории к практике: сборник статей. Часть I. – Новосибирск: СибАК, 2012. С. 86 – 98.

 Суханов Д.Я., Латипова Л.М. Ультразвуковидение в воздухе с применением крестовидной матрицы ультразвуковых излучателей и приёмников // Известия вузов. Физика. 2013. Т. 56. № 8/2. С. 145 - 148.

8. Семин А.И., Трофимов В.Н. Масштабное физическое гидроакустическое моделирование радиолокационных систем получения и обработки радиолокационных изображений высокого разрешения // Известия РАН. Теория и системы управления. 2005. №. 4. С. 143 - 157.

 Иванов А.А., Козлов А.В., Сахно И.В., Ткачев Е.А., Симонов А.Б.
 Корреляционная обработка сложных сигналов с использованием свойств фрактальных отображений // Радиопромышленность. 2010. № 2. С. 68 - 76.

10. Fransois Vincent, Bernard Mouton, Eric Chaumette, Claude Nouals, Olivier Besson. Synthetic aperture radar demonstration kit for signal processing education, available at: <u>http://oatao.univ-toulouse.fr/151/1/Vincent_151.pdf</u>

11. Сельвесюк Н.И., Веселов Ю.Г., Гайденков А.В., Островский А.С. Оценка характеристик обнаружения и распознавания объектов на изображении от специальных оптико-электронных систем наблюдения летного поля // Труды МАИ. 2018. № 103. URL: http://trudymai.ru/published.php?ID=100782

12. Мороз А.В., Пименов В.Ф., Соколов С.М. Локационный акустический комплекс полунатурного моделирования радиолокационных систем с синтезированной апертурой антенны // Юбилейная 70-я Всероссийская научно-техническая конференция (СПбНТОРЭС): материалы конференции. – СПб.: СПбНТОРЭС имени А.С. Попова, 2015. Т. 1. С. 78 - 79.

13. Лялин К.С., Хасанов М.С., Мелёшин Ю.М., Кузьмин И.А. Спектральный метод подавления боковых лепестков автокорреляционной функции длинных

псевдослучайных бинарных последовательностей // Труды МАИ. 2018. № 103. URL: http://trudymai.ru/published.php?ID=100800

14. Кук Ч., Бернфельд М. Радиолокационные сигналы. – М.: Советское радио, 1971.
– 568 с.

15. Ultrasnic Sensors, available at: https://www.murata.com/enen/products/productdetail?partno= MA40S4S

Очков В.Ф. Mathcad 14 для студентов и инженеров: русская версия. – СПб.:
 БХВ-Петербург, 2009. – 512 с.

Кубанов В.П. Направленные свойства антенных решеток. - Самара: ПГУТИ,
 2015. – 56 с.

 Воскресенский Д.И., Степаненко В.И., Филиппов В.С. Устройства СВЧ и антенны. Проектирование фазированных антенных решеток. – М.: Радиотехника, 2003. – 632 с.

19. Кобелева С.П., Перевезенцев А.В., Фомин В.М., Френкель М.М. Расчет диаграммы направленности активной фазированной антенной решетки // Электронная техника. Серия: Полупроводниковые приборы. 2017. № 4 (247). С. 37 - 41.

20. Козлов А.В., Косынкин А.И., Мороз А.В., Сахно И.В., Пименов В.Ф. Технология и результаты полунатурного моделирования в условиях ультразвукового полигона системы цифровой обработки траекторного сигнала РЛС ОЗП, использующей различные типы сложных широкополосных зондирующих сигналов // Труды XXX Всероссийского симпозиума «Радиолокационное исследование природных сред»

(Санкт-Петербург, 18–19 апреля 2017). – СПб.: ВКА имени А.Ф. Можайского, 2017.

Вып. 11. Т. 2. С. 51 - 63.