УДК 532.507

Аналитический метод определения профиля скорости турбулентного течения жидкости в плоской задаче Пуазейля

Хатунцева О.Н.

Ракетно-космическая корпорация «Энергия» имени С.П. Королёва, ул. Ленина, 4А, Королев, Московская область, 141070, Россия e-mail: <u>Olga.Khatuntseva@rsce.ru</u>

Статья поступила 17.05.2019

Аннотация

В работе теоретически найдены два решения плоской задачи Пуазейля. Одно из них соответствует ламинарному режиму течения, второе – турбулентному. Первое решение реализуется при любых значениях числа Рейнольдса и характеризуется параболическим профилем скорости во всей области течения жидкости, второе – реализуется только при достаточно больших значениях числа Рейнольдса и в центре плоского канала характеризуется логарифмическим профилем скорости. Множитель, стоящий перед функцией логарифма, является Приведено постоянной Кармана. сравнение результатов С имеющимися экспериментальными данными. Аналитические решения плоской задачи Пуазейля удалось определить из уравнений Навье-Стокса благодаря учету в них производства энтропии, обусловленного возбуждением стохастических пульсаций в потоке жидкости.

Ключевые слова: турбулентность, плоское течение Пуазейля, ламинарнотурбулентный переход, критическое число Рейнольдса.

1. Введение

Данная работа продолжает цикл публикаций [1-4], посвященных решению гидродинамических задач, допускающих аналитический подход к их рассмотрению. К сожалению, в силу своей сложности уравнения Навье-Стокса (УНС) имеют такие решения в ограниченном круге задач - для очень простых геометрий. Самыми известными из них являются [5]:

- задача Хагена-Пуазейля, описывающая течение несжимаемой нетеплопроводной жидкости в трубе кругового сечения;

плоская задача Куэтта, описывающая несжимаемой течение нетеплопроводной жидкости, расположенной между двумя бесконечными параллельными плоскими пластинами, движущимися с постоянными скоростями в противоположных относительно друг друга направлениях в собственных плоскостях (течение происходит под действием сил вязкого трения, действующих на жидкость, и сдвигового напряжения параллельного стенкам);

- плоская задача Пуазейля, описывающая течение несжимаемой нетеплопроводной жидкости, также расположенной между двумя бесконечными параллельными плоскими пластинами, но в отличие от плоского течения Куэтта, течение происходит под действием перепада давления.

Во всех этих задачах [5-6] при интегрировании УНС в отсутствии учета

производства энтропии, возникающего в результате возбуждения стохастических пульсаций скорости, существует единственное аналитическое решение, описывающее стационарный профиль скорости при любых значениях числа Рейнольдса. В задаче Хагена-Пуазейля и в плоской задаче Пуазейля – это параболический профиль скорости, в плоской задаче Куэтта – линейный. Во всех случаях этот профиль соответствует ламинарному режиму течения.

Причем, решения задач Хагена-Пуазейля и Куэтта, помимо всего прочего являются устойчивыми в линейном приближении (для бесконечно малых возмущений) [6]. Данный вывод плохо соотносится с огромным количеством экспериментов, в которых при достаточно больших значениях числа Рейнольдса практически невозможно "удержать" жидкость в ламинарном состоянии - происходит потеря устойчивости и переход к турбулентному режиму течения.

Для плоской задаче Пуазейля условие линейной устойчивости не выполняется, однако, найденное минимальное – критическое число Рейнольдса, при котором может осуществляться переход от ламинарного к турбулентному режиму течения составляет, примерно, 5770 (по данным расчетов S.A. Orszag [5]), что намного превосходит экспериментально определяемые значения, величина которых равна, примерно, 1000.

В качестве попыток разрешения возникающих противоречий в вопросах устойчивости обычно выдвигаются предположения о неустойчивости течений к конечным возмущениям. Однако в такой постановке не вполне понятным остается отсутствие других (помимо ламинарных) квазистационарных аналитических

решений УНС, к переходу к которым и должны стремиться режимы течения при потере устойчивости.

В работах [1-4], [7] был подробно рассмотрен вопрос о возможности описания турбулентного режима течения жидкости с помощью УНС в расширенном фазовом пространстве и необходимости учета производства энтропии в таком процессе. С помощью предложенного в работе [1] подхода аналитически была решена задача течения жидкости в трубе кругового сечения (задача Хагена-Пуазейля), в работе [4] аналитически решена задача течения жидкости между двумя движущимися плоскими стенками (плоская задача Куэтта). В каждой из этих задач найдены два решения, одно из которых отвечает ламинарному, а второе - турбулентному режиму течения. В задаче Хагена-Пуазейля показано, что турбулентному течению соответствует логарифмический профиль скорости в центре трубы, аналитически определено значение постоянной Кармана. В плоской задаче Куэтта турбулентному течению соответствует профиль скорости, характеризующийся функцией гиперболического синуса, с параметром, зависящим от значения числа Рейнольдса.

В работах [2], [4] на основе метода «разрывных функций» предложен подход, позволяющий определить критическое значение числа Рейнольдса, при котором становится возможен переход от ламинарного к турбулентному режиму течения. В задаче Хагена-Пуазейля расчетное значение составило, примерно, 1970, в плоской задаче Куэтта, примерно, 305.

Воспользовавшись подходом, предложенным в [1-4], в данной работе попытаемся найти аналитические решения для двух режимов течения (ламинарного

и турбулентного) в плоской задаче Пуазейля.

Однако здесь следует подчеркнуть, что поиск аналитических решений в достаточно простых «модельных» задачах не является самоцелью. Основной мотивацией работы является разработка подхода, позволяющего учитывать в УНС особенности ламинарного и турбулентного режимов течения, для дальнейшего корректного интегрирования УНС, как аналитическими, так и численными методами.

Безусловно, численных решений задач гидродинамики на основе уравнения Навье-Стокса (УНС), как для ламинарного, так и для турбулентного режимов течения жидкости, в настоящее время существует огромное количество (см., например, [8-21]). Несколько десятилетий исследователи активно разрабатывают новые методы, позволяющие совершенствовать технику численного интегрирования УНС (см. [22-31]). Практический интерес к такого рода задачам нельзя переоценить, поскольку они встречаются повсеместно, начиная от вопросов, связанных с расчетом ветровых нагрузок на здания и конструкции, и заканчивая аэро- и гидродинамическими задачами в авиации и ракетостроении. Несмотря на это, на математическом уровне строгости так и не удалось ответить на главный вопрос: описывают ли УНС оба этих режима.

Уравнения Навье-Стокса представляют собой второй закон Ньютона для выделенного достаточно малого, но конечного объема изотермической жидкости, и описывают ускорение этого объема под действием силы, обусловленной градиентом давления и внешних сил, с одной стороны, а также вязкой силы, действующей по поверхности этого объема, с другой стороны.

В случае детерминированного – ламинарного режима течения жидкости корректность использования УНС для описания такого процесса не вызывает сомнений. Однако при переходе к турбулентному режиму течения в жидкости возникает большое число дополнительных - стохастических степеней свободы. В связи с этим вопрос о возможности описания такой системы с помощью детерминированных уравнений Навье-Стокса остается открытым.

Используемые в настоящее время подходы к решению задач гидродинамики на основе УНС можно условно разделить на два класса: решения на основе приближенных «осредненных» методов и решения на основе прямого численного моделирования. Существуют также подходы на основе комбинаций этих методов (метод «крупных вихрей»).

В работах [1], [7] показано, что получение «турбулентных» решений при интегрировании УНС на основе прямого численного моделирования можно сравнить с моделированием стохастического процесса на основе аналоговых принципов. Приближенные численные методы (методы осреднения по Рейнольдсу, методы «крупных вихрей») изменяют УНС за счет введения дополнительных членов, описывающих корреляции пульсаций, и уравнений, моделирующих замыкание осредненных моментов пульсации. По сути, их решения уже нельзя рассматривать, как результат непосредственного интегрирования УНС. Поэтому вопрос о возможности или невозможности описания турбулентного режима течения на основе УНС и подходы к решению этих уравнений, необходимо исследовать,

прежде всего, на примере тех задач гидродинамики, которые допускают аналитические решения, к числу которых, относится плоская задача Пуазейля.

2. Применение метода расширения фазового пространства с использованием стохастической переменной для описания турбулентности в плоской задаче Пуазейля.

Турбулентный режим, также как и другие стохастические процессы, обладает свойством – возбуждением важным статистическим большого количества независимых степеней свободы (пульсаций) на разных масштабах рассмотрения системы. При этом закон сохранения импульса для выделенного объема жидкости (в уравнений Навье-Стокса), записанный без учета форме такого процесса, нарушается, поскольку, не все суммарное воздействие, направленное на выделенный объем, идет на его ускорение: часть такого воздействия должно пойти на возбуждение дополнительных - внутренних - степеней свободы.

Параметром, характеризующим связь между микро- и макропроцессами, является энтропия [32] и, следовательно, в таком процессе необходимо учесть производство энтропии выделенного объема жидкости. Исходя из этого рассуждения, можно переписать уравнения Навье-Стокса, включив в их левую часть – полную производную по времени – дополнительный член, отвечающий за изменение скорости, при изменении энтропии *S* выделенного объема:

 $S(t,\vec{r}) = -\int \varphi[p(t,\vec{r})] \ln \varphi[p(t,\vec{r})] d[p(t,\vec{r})].$

В выражении для энтропии функция $\varphi[p(t, \vec{r})]$ - это плотность вероятности реализации возмущения скорости величины $p(t, \vec{r})$ в заданный момент времени t в рассматриваемой точке пространства \vec{r} .

Дифференциальная энтропия для распределения с ограниченной дисперсией максимальна в случае гауссова распределения вероятностей, то есть когда события происходят независимо друг от друга (не коррелированы). Изменение энтропии в стохастической системе будет характеризовать возникновение коррелированных событий.

Расширяя фазовое пространство дополнительной переменной, характеризующей энтропию $S: (t, \vec{r}) \rightarrow (t, \vec{r}; S)$, ускорение выделенного объема жидкости, на который действуют силы, стоящее в правой части УНС, можно записать в виде:

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\vec{V}(t + \Delta t, \vec{r} + \Delta \vec{r}, S + \Delta S) - \vec{V}(t, \vec{r}, S)}{\Delta t}$$

Добавляя и одновременно вычитая векторы в это выражение, его можно переписать в виде:

$$\vec{a} = \lim_{\Delta t \to 0} \left[\frac{\vec{V}(t + \Delta t, \vec{r} + \Delta \vec{r}, S + \Delta S) - \vec{V}(t, \vec{r} + \Delta \vec{r}, S + \Delta S)}{\Delta t} + \frac{\vec{V}(t, \vec{r} + \Delta \vec{r}, S + \Delta S) - \vec{V}(t, \vec{r}, S + \Delta S)}{\Delta t} + \frac{\vec{V}(t, \vec{r}, S + \Delta S) - \vec{V}(t, \vec{r}, S)}{\Delta t} \right]$$

В результате, можно заметить, что при выполнении условий: $\Delta \vec{r} \xrightarrow{\to} 0$, $\Delta S \xrightarrow{\to} 0$, в полученном выражение для ускорения выделенного объема жидкости первое слагаемое равно: $\frac{\partial \vec{V}}{\partial t}$; второе слагаемое: $\frac{\partial \vec{V}}{\partial \vec{r}} \cdot \frac{d\vec{r}}{dt} = (\vec{V}\nabla)\vec{V}$; третье слагаемое: $\frac{\partial \vec{V}}{\partial S} \cdot \frac{dS}{dt}$.

Таким образом, учет влияния производства энтропии в выделенном объеме жидкости на его ускорение, приведет к изменению левых частей уравнений Навье-Стокса, характеризующих ускорение выделенного объема жидкости и представляющих собой полные производные по времени. В расширенном фазовом пространстве их можно записать, включив дополнительный член, отвечающий за изменение скорости, при производстве энтропии *S* в выделенном объеме:

$$\frac{\partial \vec{V}}{\partial t} + \left(\vec{V}\nabla\right)\vec{V} + \frac{\partial \vec{V}}{\partial S}\frac{dS}{dt} = -\frac{1}{\rho}\nabla P + \nu\Delta\vec{V} + \vec{f}.$$

Отсчет энтропии можно начинать с любого уровня и, поэтому, возникает неопределенность при постановке начальных и граничных условий в расширенном пространстве переменных к полученному уравнению. Чтобы этого избежать, представим модифицированное уравнение Навье-Стокса через переменную, характеризующую плотность вероятности реализации возмущения скорости:

$$\frac{\partial \vec{V}}{\partial t} + \left(\vec{V}\nabla\right)\vec{V} + \frac{\partial \vec{V}}{\partial\varphi}\frac{1}{\delta S/\delta\varphi}\frac{dS}{dt} = -\frac{1}{\rho}\nabla P + \nu\Delta\vec{V} + \vec{f} . \tag{1}$$

Производная $\delta S/\delta \varphi$, входящая в уравнение (1), может быть определена как функциональная производная. Найдем ее значение:

$$\left\langle \frac{\delta S}{\delta \varphi}, h \right\rangle = -\frac{d}{d \cdot \Im} \int (\varphi(p) + \Im \cdot h(p)) \ln(\varphi(p) + \Im \cdot h(p)) dp \bigg|_{\Im = 0} =$$
$$= -\int (\ln \varphi(p) + 1) h(p) dp = \left\langle -(\ln \varphi(p) + 1), h \right\rangle.$$

Откуда следует, что $\delta S/\delta \varphi = -\ln \varphi(p) - 1$. Поскольку, $-(\ln \varphi + 1)\delta \varphi = \delta(-\varphi \ln \varphi)$, то, обозначив, $\tilde{s}(p) = -\varphi(p) \ln \varphi(p)$, перепишем уравнение (1) в виде:

$$\frac{\partial \vec{V}}{\partial t} + \left(\vec{V}\nabla\right)\vec{V} + \frac{\partial \vec{V}}{\partial \tilde{s}}\frac{dS}{dt} = -\frac{1}{\rho}\nabla P + \nu\Delta\vec{V} + \vec{f} \; .$$

Производство энтропии: dS/dt, можно охарактеризовать временным масштабом τ , на котором происходит изменение энтропии стохастической системы на единицу. В результате, полученное уравнение можно представить в виде:

$$\frac{\partial \vec{V}}{\partial t} + \left(\vec{V}\nabla\right)\vec{V} + \frac{1}{\tau}\frac{\partial \vec{V}}{\partial \tilde{s}} = -\frac{1}{\rho}\nabla P + \nu\Delta\vec{V} + \vec{f} .$$
⁽²⁾

Решением уравнения (2) (с граничными и начальными условиями, соответствующими конкретной задаче) будет являться значение скорости $\vec{V} = \vec{V}(t, \vec{r}, \vec{s}; \tau) = \vec{V}(t, \vec{r}, \vec{s}(\phi); \tau)$, реализующейся с вероятностью ϕ , в системе, в которой производство энтропии характеризуется временным интервалом τ , в момент времени t, в точке $\vec{r}(x, y, z)$. Для того чтобы корректно в общем случае описывать дополнительное слагаемое в левой части модифицированного уравнения Навье–Стокса, необходимо построить замыкающую модель стохастических процессов и метод их описания [3], [33-34]. Однако в тех случаях, когда дополнительный член уравнения существенно влияет на вид решения но, при этом, само решение практически не зависит от дополнительной переменной (в данном случае \tilde{s}), можно обойтись без построения такой модели. Исследование показало, что описание плоского течения Пуазейля относится именно к такому классу задач.

Для этой задачи достаточно рассмотреть систему уравнений, состоящую из уравнения неразрывности для несжимаемой жидкости и модифицированных УНС:

$$\begin{cases} \nabla(\rho \vec{V}) = 0\\ \frac{\partial \vec{V}}{\partial t} + (\vec{V}\nabla)\vec{V} + \frac{1}{\tau}\frac{\partial \vec{V}}{\partial \vec{s}} = -\frac{1}{\rho}\nabla P + \nu\Delta \vec{V} \end{cases}$$
(3)

Задачу будем решать в классической постановке [5], а именно, в предположении, что скоростями в поперечных направлениях y и z можно пренебречь по сравнению с продольной скоростью V. Из чего следует постоянство давления в поперечных направлениях. Кроме того, в этом случае из уравнения неразрывности сразу вытекает, что продольная составляющая скорости V не зависит от значения продольной координаты x. Тогда систему уравнений (3) для описания стохастических пульсаций скорости при квазистационарном (когда $\partial V/\partial t = 0$) течении вязкой несжимаемой жидкости, можно переписать в виде соотношения:

$$\frac{1}{\tau}\frac{\partial V}{\partial \widetilde{s}} = -\frac{1}{\rho}\frac{dP}{dx} + v\frac{\partial^2 V}{\partial y^2}.$$

Предполагая постоянство градиента скорости в продольном направлении, полученное уравнение можно переписать в виде:

$$\frac{b^2}{\tau \nu} \frac{\partial \widetilde{V}}{\partial \widetilde{s}} = \frac{\partial^2 \widetilde{V}}{\partial \widetilde{y}^2} + 2, \qquad (4)$$

где $\tilde{y} = y/b$, *b* - полуширина канала, $\tilde{V} = \tilde{V}(\tilde{y}, \tilde{s}) = V/U$ - безразмерная квазистационарная компонента скорости в продольном направлении в расширенном стохастическом пространстве с дополнительной переменной \tilde{s} , $U = -\frac{b^2}{2\rho v} \frac{dP}{dx}$ скорость жидкости в центре канала при ламинарном режиме течения [1], *v* вязкость жидкости, ρ - плотность жидкости.

Необходимо подчеркнуть, что в случае турбулентного режима, течение будет, безусловно, иметь пространственный - трехмерный характер. Однако нерассмотренные в уравнениях компоненты скорости будут иметь стохастический характер пульсаций. Они учитываются в уравнении (4) при введении переменной \tilde{s} , отвечающей за общее производство энтропии в турбулентном режиме.

Уравнение (4) будем решать, используя граничные условия – «прилипание» жидкости на стенках в отсутствии пульсаций: $\tilde{V}(\tilde{y}, \tilde{s})\Big|_{\substack{\tilde{y}=\pm 1\\\tilde{s}=0}} = 0$, и условие симметрии на оси канала: $\partial \tilde{V}(\tilde{y}, \tilde{s})/\partial \tilde{y}\Big|_{\substack{\tilde{y}=0\\\tilde{s}=0}} = 0$.

Уравнение (4) можно упростить, введя вместо временного масштаба auбезразмерный коэффициент γ (0 < $\gamma \le 1$) - параметр, характеризующий пространственный масштаб, и воспользовавшись соотношением: $\tau = \frac{\gamma b}{U} = \frac{\gamma b^2}{\nu R_P}$, где Re = Ub/v - число Рейнольдса при ламинарном режиме течения жидкости, рассчитанное по характерному размеру полуширины канала.

Подставляя зависимость $\tau(\gamma)$ в уравнение, приходим к соотношению:

$$\frac{\operatorname{Re}}{\gamma} \frac{\partial \widetilde{V}}{\partial \widetilde{s}} = \frac{\partial^2 \widetilde{V}}{\partial \widetilde{y}^2} + 2$$

Сделав в нем замену:

$$\widetilde{V}(\widetilde{y},\widetilde{s}) = \widetilde{u}(\widetilde{y},\widetilde{s}) - \widetilde{y}^2, \qquad (5)$$

получим

$$\frac{\operatorname{Re}}{\gamma} \frac{\partial \widetilde{u}}{\partial \widetilde{s}} = \frac{\partial^2 \widetilde{u}}{\partial \widetilde{y}^2} \,. \tag{6}$$

Решая уравнение (6) методом разделения переменных:

$$\widetilde{u}(\widetilde{y},\widetilde{s}) = N(\widetilde{s})F(\widetilde{y}),\tag{7}$$

получим два уравнения:

$$\frac{1}{N}\frac{dN}{d\tilde{s}} = \frac{a\gamma}{\text{Re}} \qquad \text{M} \qquad \frac{d^2F}{d\tilde{y}^2} = aF, \qquad (8)$$

где $a = a(\gamma, \text{Re})$ - произвольная константа при любых фиксированных значениях параметров γ и Re. Нетрудно заметить, что нулевое значение константы *a* с учетом соотношения (5) и граничных условий к уравнению (4) соответствует

решению уравнений Навье-Стокса для ламинарного течения несжимаемой жидкости в плоском канале. Это решение будет также являться первым решением задачи течения жидкости в плоском канале с учетом стохастических возмущений скорости для любых значений числа Рейнольдса.

В случае $a \neq 0$, решением первого уравнения (8) являются функции

$$N(\tilde{s}) \sim e^{\frac{a\gamma}{Re}\tilde{s}}.$$
 (9)

Гладкие решения второго уравнения (8) можно записать в виде:

$$F = \frac{ch(\sqrt{a}\tilde{y})}{ch\sqrt{a}}$$
, где $a > 0$; $F = \frac{\cos(\sqrt{|a|}\tilde{y})}{\cos\sqrt{|a|}}$, где $a < 0$.

Соответствующие им выражения для скорости имеют вид:

$$\widetilde{V}(\widetilde{y},\widetilde{s}) = \frac{ch(\sqrt{a}\widetilde{y})}{ch\sqrt{a}}e^{\frac{a}{\operatorname{Re}}\widetilde{y}} - \widetilde{y}^{2}, \quad a > 0, \qquad (10)$$

$$\widetilde{V}(\widetilde{y},\widetilde{s}) = \frac{\cos\left(\sqrt{|a|}\widetilde{y}\right)}{\cos\sqrt{|a|}} e^{-\frac{|a|}{\operatorname{Re}}\widetilde{y}} - \widetilde{y}^{2}, \quad a < 0.$$
(11)

Рассмотрим поведение течения жидкости вблизи стенок канала. Для этого введем переменную $\xi = b - y$ или переменную $\tilde{\xi} = 1 - \tilde{y}$ (здесь $\tilde{\xi} = \xi/b$, $\tilde{y} = y/b$), значение которой будем отсчитывать от стенки. Выражения (10)-(11) перепишем в виде зависимостей безразмерных скоростей от безразмерных расстояний относительно динамических значений скорости V_* и длины y_* , соответственно (при этом, $y_*V_*/v \sim 1$):

$$\begin{split} \frac{V(\xi,\widetilde{s})}{V_*}\widetilde{V}_* &= \frac{ch\left(\sqrt{a}\left(1-\frac{\xi V_*}{\nu}\widetilde{y}_*\right)\right)}{ch\sqrt{a}}e^{\frac{a}{\operatorname{Re}}\widetilde{\gamma}} - \left(1-\frac{\xi V_*}{\nu}\widetilde{y}_*\right)^2, \quad a > 0.\\ \frac{V(\xi,\widetilde{s})}{V_*}\widetilde{V}_* &= \frac{\cos\left(\sqrt{|a|}\left(1-\frac{\xi V_*}{\nu}\widetilde{y}_*\right)\right)}{\cos\sqrt{|a|}}e^{-\frac{|a|}{\operatorname{Re}}\widetilde{\gamma}} - \left(1-\frac{\xi V_*}{\nu}\widetilde{y}_*\right)^2, \quad a < 0. \end{split}$$

Поскольку динамические характеристики течения непосредственно у стенок канала в ламинарном и турбулентном потоках должны сохраняться, то безразмерные значения динамических скорости и длины: $\tilde{V}_* = V_*/U$ и $\tilde{y}_* = y_*/b$, входящие в эти выражения, можно определить, используя соотношение для скорости ламинарного течения $\tilde{V} = 1 - \tilde{y}^2$:

$$\widetilde{V}_{*} = \frac{1}{U} \sqrt{\frac{\sigma}{\rho}} = \frac{1}{U} \sqrt{\nu \left| \frac{\partial V}{\partial y} \right|_{\widetilde{y}=1}_{\widetilde{s}=0}} = \sqrt{\frac{\nu}{Ub} \left| \frac{\partial \widetilde{V}}{\partial \widetilde{y}} \right|_{\widetilde{y}=1}_{\widetilde{s}=0}} = \frac{2}{\sqrt{2 \operatorname{Re}}}, \quad (12)$$

$$\tilde{y}_{*} = \frac{y_{*}}{b} = \frac{y_{*}V_{*}}{\nu} \frac{\nu}{Ub} \frac{U}{V_{*}} \sim \frac{1}{\text{Re}\tilde{V}_{*}} = \frac{1}{\sqrt{2\text{Re}}}, \qquad (y_{*}V_{*}/\nu \sim 1).$$
(13)

здесь σ - отнесенная к единице площади сила трения.

Используя соотношения (12), (13) перепишем выражения для скорости в виде:

$$\frac{V(\xi,\tilde{s})}{V_*} = \frac{\sqrt{2\operatorname{Re}}}{2} \left(\frac{ch\left(\sqrt{a}\left(1 - \frac{\xi V_*}{\nu} \frac{1}{\sqrt{2\operatorname{Re}}}\right)\right)}{ch\sqrt{a}} e^{\frac{a}{\operatorname{Re}}\tilde{r}} - \left(1 - \frac{\xi V_*}{\nu} \frac{1}{\sqrt{2\operatorname{Re}}}\right)^2\right), \quad a > 0.$$

$$\frac{V(\xi,\tilde{s})}{V_*} = \frac{\sqrt{2\operatorname{Re}}}{2} \left(\frac{\cos\left(\sqrt{|a|} \left(1 - \frac{\xi V_*}{\nu} \frac{1}{\sqrt{2\operatorname{Re}}}\right)\right)}{\cos\sqrt{|a|}} e^{-\frac{|a|}{\operatorname{Re}}\gamma\tilde{s}} - \left(1 - \frac{\xi V_*}{\nu} \frac{1}{\sqrt{2\operatorname{Re}}}\right)^2\right), \ a < 0.$$

При нулевом значении стохастического возмущения ($\tilde{s} = 0$) в точке $\xi = y_*$ (и $y_*V_*/v \sim 1$), значение скорости должно быть равно значению динамической скорости: $V = V_*$. Поэтому от полученных выражений можно перейти к уравнениям:

$$\frac{\sqrt{2\operatorname{Re}}}{2} \left(ch\left(\sqrt{\frac{a}{2\operatorname{Re}}}\right) - sh\left(\sqrt{\frac{a}{2\operatorname{Re}}}\right) th\sqrt{a} \right) - \frac{\sqrt{2\operatorname{Re}}}{2} - \frac{1}{2\sqrt{2\operatorname{Re}}} = 0, \quad a > 0.$$

$$\frac{\sqrt{2\operatorname{Re}}}{2} \left(cos\left(\sqrt{\frac{|a|}{2\operatorname{Re}}}\right) + sin\left(\sqrt{\frac{|a|}{2\operatorname{Re}}}\right) tg\sqrt{|a|} \right) - \frac{\sqrt{2\operatorname{Re}}}{2} - \frac{1}{2\sqrt{2\operatorname{Re}}} = 0, \quad a < 0.$$

Предполагая, что $|a/(2 \operatorname{Re})| < 1$, и разлагая гиперболические и тригонометрические функции, содержащие числа Рейнольдса, в ряд Тейлора, запишем полученные уравнения с точностью до $O(1/(2 \operatorname{Re}))$:

$$\frac{a-2}{2\sqrt{2\operatorname{Re}}} - \sqrt{a} \cdot th\sqrt{a} \approx 0, \quad a > 0, \quad (14)$$

$$\frac{|a|+2}{2\sqrt{2\operatorname{Re}}} - \sqrt{|a|} \cdot tg \sqrt{|a|} \approx 0, \quad a < 0.$$
⁽¹⁵⁾

При больших значениях параметра *a* (по абсолютной величине сравнимых со значением корня из числа Рейнольдса или превосходящим его), спектр решений, определяемых системой уравнений (14), (10) и (15), (11), будет практически сплошным, за счет быстроменяющихся тригонометрических функций. Эти решения

будут являться источником «белого» шума. Их вклад в создание квазистационарного профиля скорости в данной работе рассматриваться не будет.

Для значений параметра a по абсолютной величине значительно меньших числа Рейнольдса (или, наоборот, при фиксированных значениях |a| и достаточно больших значениях числа Рейнольдса), уравнения (14)-(15) сводятся к виду:

$$\sqrt{a} \cdot th\sqrt{a} \approx 0, \quad a > 0,$$
 (16)

$$\sqrt{|a|} \cdot tg \sqrt{|a|} \approx 0, \quad a < 0.$$
⁽¹⁷⁾

Действительным решением уравнения (16) является значение $\sqrt{a} \approx 0$. Решения уравнения (17): $\sqrt{|a_n|} \approx \pi n$, где *n* - целые числа и $\pi^2 n^2 <<\sqrt{2}$ Re.

Решение уравнения (16) со значением $\sqrt{a} \approx 0$ соответствует ламинарному решению и в дальнейшем, при определении профиля турбулентного течения, нас интересовать не будет.

Частными решениями задачи для турбулентного течения вблизи стенок канала с точностью до O(1/Re) являются выражения для скорости, со значениями параметров $\sqrt{|a_n|} \approx \pi n$, $a_n \approx -\pi^2 n^2$:

$$V_n^+(\xi^+) = \xi^+ - \frac{\pi^2 n^2 + 2}{4\sqrt{2\,\mathrm{Re}}} \xi^{+^2} + O\left(\frac{1}{2\,\mathrm{Re}}\right).$$
(18)

Здесь приняты стандартные обозначения: $V^{\scriptscriptstyle +} = V(\xi, \widetilde{s})/V_*$, $\xi^{\scriptscriptstyle +} = \xi V_*/v$.

В линейном приближении в областях, где $\xi^+ < 1$, выражение (18) сводится к зависимости:

$$V^{+}\left(\xi^{+}\right) \approx \xi^{+}.$$
(19)

Выражение (19) хорошо соотносится с экспериментальными данными для пристеночных областей канала.

Во всей области канала частными решениями задачи для турбулентного течения являются выражения, заданные соотношением (11) со значениями параметров $\sqrt{|a_n|} \approx \pi n$:

$$\widetilde{V}_{n}(\widetilde{y},\widetilde{s}) = \frac{\cos(\pi n \widetilde{y})}{\cos(\pi n)} e^{-\frac{\pi^{2}n^{2}}{\operatorname{Re}}\gamma\widetilde{s}} - \widetilde{y}^{2}.$$

Скорости, определяемые этим уравнением, будут характеризовать выделенные частоты в спектре решений. Общее решение можно представить в виде ряда:

$$\widetilde{V}(\widetilde{y},\widetilde{s}) = \sum_{n} c_{n} \frac{\cos(\pi n \widetilde{y})}{\cos(\pi n)} e^{-\frac{\pi^{2} n^{2}}{\operatorname{Re}} \widetilde{y} \widetilde{s}} - \sum_{n} c_{n} \widetilde{y}^{2}.$$

Или учитывая, что $c_n/\cos(\pi n) = (-1)^n c_n$, можно записать

$$\widetilde{V}(\widetilde{y},\widetilde{s}) = \sum_{n} (-1)^{n} c_{n} \cos(\pi n \widetilde{y}) e^{-\frac{\pi^{2} n^{2}}{\operatorname{Re}} \gamma \widetilde{s}} - \sum_{n} c_{n} \widetilde{y}^{2}.$$
(20)

Поскольку $\pi^2 n^2 < \sqrt{2 \text{Re}}$, то из уравнения (20) видно, что с увеличением числа Рейнольдса модуль показателя экспоненты будет уменьшаться. И, следовательно, при достаточно больших значениях числа Рейнольдса при описании течения в центральной части канала изменением стохастической переменной можно пренебречь. Поэтому, выбор записи уравнения Навье-Стокса в расширенном фазовом пространстве в виде уравнения типа (2) без учета уравнений, описывающих

эволюцию траекторий в фазовом стохастическом пространстве, является оправданным при достаточно больших числах Рейнольдса.

Для того чтобы определить значения коэффициентов разложения, можно рассмотреть течение вблизи стенки канала. Для этого перепишем выражение (19) для переменных \tilde{V} и $\tilde{y}: \tilde{V}(\tilde{y})|_{\tilde{y} \to 1} \approx 2(1-\tilde{y}).$

Из этого выражения, а также выражения (20): $\widetilde{V}(\widetilde{y},\widetilde{s})|_{\widetilde{y}\to 1} = 2(1-\widetilde{y})\sum_{n} c_{n}$,

следует соотношение: $\sum_{n} c_{n} = 1$. Подставляя его в выражение (20), получим

$$\widetilde{V}(\widetilde{y},\widetilde{s}) = \sum_{n} (-1)^{n} c_{n} \cos(\pi n \widetilde{y}) e^{-\frac{\pi^{2} n^{2}}{\operatorname{Re}} \widetilde{y}} - \widetilde{y}^{2}.$$
(21)

Причем, $\sum_{n} (-1)^{n} c_{n} = \widetilde{V}(\widetilde{y}, \widetilde{s}) \Big|_{\widetilde{y}=0}^{\widetilde{s}=0} = \widetilde{V}_{0}$ - скорость в центре канала при турбулентном режиме течения.

При заданном условии $\pi^2 n^2 \ll \sqrt{2 \text{Re}}$ экспоненту в выражении (21) можно разложить в ряд Тейлора и записать это выражение в виде:

$$\widetilde{V}(\widetilde{y},\widetilde{s}) \approx \sum_{n} (-1)^{n} c_{n} \cos(\pi n \widetilde{y}) - \widetilde{y}^{2} - \sum_{n} (-1)^{n} c_{n} \cos(\pi n \widetilde{y}) \frac{\pi^{2} n^{2}}{\operatorname{Re}} \gamma \widetilde{s} .$$

В точке $\tilde{y} = 1$, учитывая, что $\sum_{n} c_n = 1$, можно записать:

$$\widetilde{V}(\widetilde{y},\widetilde{s})\Big|_{\widetilde{y}=1} \approx -\gamma \widetilde{s} \sum_{n} c_{n} \frac{\pi^{2} n^{2}}{\operatorname{Re}}$$

Это выражение характеризует возмущение безразмерной скорости вблизи стенки, реализующейся с вероятностью, описываемой стохастической переменной *s* . Для

того, чтобы стохастическое возмущение скорости, с одной стороны, «диссипировало» на длине вязкого масштаба, а, с другой стороны, не исчезло полностью, «амплитуда» ее изменения на масштабе $\gamma = 1$ должна быть порядка безразмерной динамической скорости. Вблизи стенки канала общее решение для скорости должно определяться суммой частных решений, умноженных на те же коэффициенты c_n , что и в соотношении (20). Представляя динамическую скорость в виде разложения в ряд с коэффициентами c_n : $\tilde{V}_* = \sum_n c_n \tilde{V}_{*n} = 2/\sqrt{2\text{Re}}$, можно записать

$$\pi^2 n^2/\text{Re} \sim \widetilde{V}_{*n}$$

И, следовательно,

$$\widetilde{V}_* = \frac{\pi^2}{\operatorname{Re}} \sum_n c_n n^2 = \frac{2}{\sqrt{2\operatorname{Re}}}$$

Откуда немедленно следует соотношение:

$$\sum_{n} c_n n^2 = \frac{\sqrt{2\,\mathrm{Re}}}{\pi^2} \,. \tag{22}$$

Принимая во внимание соотношение (18), запишем

$$V^{+}(\xi^{+}) = \sum_{n} c_{n} V_{n}^{+}(\xi^{+}) = \left(\xi^{+} - \frac{\xi^{+^{2}}}{2\sqrt{2Re}}\right) \sum_{n} c_{n} - \frac{\pi^{2} \xi^{+^{2}}}{4\sqrt{2Re}} \sum_{n} c_{n} n^{2} + O\left(\frac{1}{2Re}\right)$$

А учитывая выражение (22) и соотношение: $\sum_{n} c_n = 1$, его можно переписать в виде:

$$V^{+}(\xi^{+}) = \xi^{+} - \frac{1}{4}\xi^{+2} + O\left(\frac{1}{\sqrt{2\,\mathrm{Re}}}\right).$$
(23)

Недалеко от точки $\xi^+ \sim 1$ (по направлению к центру канала) можно выбрать точку ξ_0^+ и в ее окрестности рассмотреть разложение скорости. В области $\xi^+ > 1$ скорость может зависеть от отношений $(\xi^+/\xi_0^+)^n$, в которых степень *m* больше или равна трем, при этом члены, содержащие выражения $(\xi^+/\xi_0^+)^n$, где *n* - меньше или равны двум, должны остаться прежними. Поэтому выражение (23) можно представить в виде:

$$V^{+}\left(\frac{\xi^{+}}{\xi_{0}^{+}}\right) = \xi_{0}^{+}\left(\frac{\xi^{+}}{\xi_{0}^{+}} - \frac{1}{2}\left(\frac{\xi^{+}}{\xi_{0}^{+}}\right)^{2}\right) + \frac{\xi_{0}^{+}}{2}\left(\frac{\xi^{+}}{\xi_{0}^{+}}\right)^{2}\left(1 - \frac{\xi_{0}^{+}}{2}\right) + O\left(\left(\frac{\xi^{+}}{\xi_{0}^{+}}\right)^{m}, \frac{1}{\sqrt{2\operatorname{Re}}}\right),$$

где *m*≥3.

Выражение, стоящее в скобках первого слагаемого в правой части последнего соотношения, является разложением функции логарифма: $\ln(1 + \xi^+/\xi_0^+)$, в окрестности точки $\xi^+ = \xi_0^+$ до квадратичного члена включительно. Поэтому в области $\xi^+ > 1$, в окрестности точки ξ_0^+ , последнее выражение можно переписать в виде:

$$V^{+}\left(\frac{\xi^{+}}{\xi_{0}^{+}}\right) \approx \xi_{0}^{+} \ln\left(1 + \frac{\xi^{+}}{\xi_{0}^{+}}\right) + \frac{\xi_{0}^{+}}{2}\left(\frac{\xi^{+}}{\xi_{0}^{+}}\right)^{2}\left(1 - \frac{\xi_{0}^{+}}{2}\right) + O\left(\left(\frac{\xi^{+}}{\xi_{0}^{+}}\right)^{m}\right), \quad m \ge 3.$$
(24)

Если приближаться к точке $\xi^+ = 1$ (границе вязкого подслоя) со стороны центральной части канала (от точки ξ_0^+), то скорость V^+ должна стремиться к значению единица, поэтому из выражения (24) следует соотношение:

$$\xi_0^+ \ln\left(1 + \frac{1}{\xi_0^+}\right) + \frac{1}{2\xi_0^+} - \frac{1}{4} + O\left(\left(\frac{1}{\xi_0^+}\right)^m\right) \sim 1, \quad m \ge 3$$

Нетрудно видеть, что этой зависимости удовлетворяет значение $\xi_0^+ \sim 2$. При таком значении ξ_0^+ , множитель, при квадратичном по ξ^+ слагаемом, входящем в уравнение (24), принимает значение, близкое к нулю. Это слагаемое в точности может быть не равно нулю, главное, чтобы оно по абсолютной величине было не больше кубического члена разложения логарифма, умноженного на ξ_0^+ . То есть должно выполняться условие: $1/(3\xi_0^{+2}) \ge |1/(2\xi_0^+) - 1/4|$. В этом случае, в области $\xi^+ > 1$, члены разложения логарифма больше квадратичного, умноженные на ξ_0^+ , будут превосходить значение квадратичного слагаемого в выражении (24). Такому условию удовлетворяют значения: $2 \le \xi_0^+ \le 1 + \sqrt{7/3} \approx 2.53$.

При таких значениях ξ_0^+ , выражение (24) можно переписать в виде:

$$V^+ \approx \frac{1}{\kappa} \ln(1 + \kappa \xi^+) + O((\xi^+)^m), \quad m \ge 3, \quad 0.4 \le \kappa = 1/\xi_0^+ \le 0.5.$$

При приближении к центру канала, при больших значениях переменной ξ^+ : $\xi^+ \rightarrow \sqrt{2 \operatorname{Re}}$, единицей стоящей под знаком логарифма можно пренебречь. В этой области канала полученное выражение можно записать в виде:

$$\frac{V}{V_*} \approx \frac{1}{\kappa} \ln \left(\frac{\xi V_*}{\nu} \right) + B, \quad \text{где} \quad B = \ln \kappa / \kappa + O\left(\left(\frac{\xi V_*}{\nu} \right)^m \right), \quad m \ge 3.$$
(25)

Поскольку в центре канала производная скорости должна быть нулевой, то

при больших значениях переменной $\xi: \xi V_*/v \to \sqrt{2 \operatorname{Re}}$, значение *B* в выражении

(25) должно стремиться к константе:
$$B = \ln \kappa / \kappa + O\left(\left(\frac{\xi V_*}{2\nu}\right)^m\right) \xrightarrow{\xi V_*/\nu >>1} const$$

Для того чтобы понять, где находятся границы области течения, скорость которого описывается выражением (25), в предположении, что $B \approx const$, вновь перейдем к переменной $\tilde{y} = 1 - \tilde{\xi} = 1 - \xi/b$, и представим функцию *F* в виде соотношения:

$$F(\tilde{y})_{\text{Re>>1}} \tilde{V}(\tilde{y}, \tilde{s})\Big|_{\tilde{s}=0} + \tilde{y}^2 = \frac{2}{\kappa\sqrt{2\text{Re}}}\ln(1-\tilde{y}) + \tilde{y}^2 + \frac{2\ln\sqrt{2\text{Re}}}{\kappa\sqrt{2\text{Re}}} + \frac{2}{\sqrt{2\text{Re}}}B.$$
(26)

Произведем разложение: $F = \sum_{n} c_n F_n$. Из соотношения (8) при значении константы $a = -\pi^2 n^2$, можно получить уравнение для *n*-ых компонент функции *F*:

$$d^2F_n/d\tilde{y}^2 = -\pi^2 n^2 F_n.$$

Домножая левую и правую части уравнения на коэффициенты *c_n*, суммируя полученные выражения, запишем

$$\sum_{n} c_{n} \frac{d^{2} F_{n}}{d \tilde{y}^{2}} = -\pi^{2} \sum_{n} c_{n} n^{2} F_{n} .$$
(27)

Учитывая, свойство линейности, а также соотношение: $\sum_{n} c_{n} F_{n} = F$, левую часть

уравнения (27) перепишем в виде: $\sum_{n} c_n \frac{d^2 F_n}{d\tilde{y}^2} = \frac{d^2}{d\tilde{y}^2} \sum_{n} c_n F_n = \frac{d^2 F}{d\tilde{y}^2}$. А, учитывая выражение (22), правую часть уравнения (27), запишем в виде:

$$-\pi^{2}\sum_{n}c_{n}n^{2}F_{n} = -\pi^{2}\sum_{n}c_{n}n^{2}\frac{\sum_{n}c_{n}n^{2}F_{n}}{\sum_{n}c_{n}n^{2}} = -\sqrt{2\operatorname{Re}}\langle F_{n}\rangle.$$
 И, предполагая выполнение

соотношения: $\langle F_n \rangle = \frac{\sum_n c_n n^2 F_n}{\sum_n c_n n^2} \approx F$ (где функция *F* определяется выражением (26)),

перейдем к уравнению:

$$d^2F/d\tilde{y}^2 + \sqrt{2\,\mathrm{Re}}F \approx 0$$
.

Подставляя в него выражение (26), получим соотношение:

$$-\frac{1}{\kappa\sqrt{2\operatorname{Re}}}\frac{1}{\left(1-\widetilde{y}\right)^{2}}+\frac{1}{\kappa}\ln\left(\sqrt{2\operatorname{Re}}\left(1-\widetilde{y}\right)\right)+\frac{\sqrt{2\operatorname{Re}}}{2}\widetilde{y}^{2}+B+1\approx0$$

Из него следует, что если *B* - медленно меняющаяся логарифмическая функция, значение которой стремится к константе в центре канала: $B = -1 - \ln(\sqrt{2 \operatorname{Re}(1-\tilde{y})})/\kappa \underset{\tilde{y} \to 0}{\approx} -1 - \ln\sqrt{2 \operatorname{Re}/\kappa}$, то в области: $0 \le \tilde{y} \le (2 \operatorname{Re})^{-n}$, где n > 1/4, выражение (25) удовлетворяет уравнению (8) с точностью не хуже, чем

$$O((2 \operatorname{Re})^{-k}),$$
 где $k = 2n - 1/2 > 0.$ (28)

При Re ~ 10⁴ и $n \rightarrow 1/4$, область течения, скорость которого описывается выражением (25) в пределах погрешности (28), составляет порядка десяти процентов от радиуса канала. Экспериментальное выражение для логарифмического профиля скорости в центральной области трубы кругового сечения имеет вид [5], [35]: $V(y)/V_*|_{Re>>1} \approx 2.5 \cdot \ln(yV_*/v) + 5.5$ и составляет порядка пятнадцати процентов от радиуса трубы. Предполагается, что эта зависимость скорости турбулентного течения жидкости от расстояния до стенки является универсальной и должна описывать скорость турбулентного течения в центральной области плоского канала.

Можно заметить хорошее совпадение полученных в данной работе результатов с экспериментальными данными. Линейный вид функции (19), характеризующий скорость турбулентного течения в пристеночной области, хорошо соотносится с экспериментальными данными. В центре плоского канала найдена логарифмическая зависимость скорости турбулентного течения от расстояния до стенки. Аналитически определенное значение постоянной Кармана, ограниченного диапазоном: $0.4 \leq \kappa \leq 0.5$, также можно считать хорошо совпадающим С экспериментальными данными.

Корректного сравнения значения параметра В, входящего в уравнение (25), полученного аналитически для плоского бесконечного канала и найденного экспериментально, провести довольно трудно, без учета дополнительного вклада решений уравнений (11), (15) и (10), (14) при абсолютных значениях параметра a, сравнимых co значением квадратного корня ИЗ числа Рейнольдса ИЛИ превосходящих его. Эти решения являются источником шума, характеризуемого спектром, близким к сплошному. Механизм влияния этого шума на значение параметра В должен быть близок механизму влиянию на этот параметр шероховатостей на стенках. Учет особенностей этих решений планируется в будущих исследованиях.

Выводы

Разработан метод описания турбулентных стохастических режимов течения, с использованием модифицированных уравнений Навье-Стокса. В таком подходе уравнения Навье-Стокса записываются в пространстве, расширенном с помощью дополнительной переменной, характеризующей производство энтропии при возбуждении стохастических возмущений.

Данный подход позволил найти два решения плоской задачи Пуазейля: одно из которых соответствует ламинарному режиму течения, второе – турбулентному.

Первое решение во всей области течения жидкости характеризуется параболическим профилем скорости; второе характеризуется линейным профилем скорости у стенок и логарифмическим – в центре канала.

Аналитически найдено значение постоянной Кармана.

Сравнение полученных в работе результатов с имеющимися экспериментальными данными показали хорошее соответствие.

Библиографический список

 Хатунцева О.Н. Об учете влияния стохастических возмущений на решения уравнений Навье-Стокса в задаче Хагена-Пуазейля // Труды МАИ. 2018. № 100. URL: http://trudymai.ru/published.php?ID=93311

2. Хатунцева О.Н. О нахождении критического числа Рейнольдса ламинарнотурбулентного перехода в задаче Хагена-Пуазейля // Труды МАИ. 2018. № 101. URL: http://trudymai.ru/published.php?ID=96567 Хатунцева О.Н. О механизме возникновения в стохастических процессах гауссовских распределений случайной величины с «тяжелыми» степенными «хвостами» // Труды МАИ. 2018. № 102. URL: <u>http://trudymai.ru/published.php?ID=98854</u>

4. Хатунцева О.Н. Аналитический метод определения профиля скорости турбулентного течения жидкости в плоской задаче Куэтта // Труды МАИ. 2019. №
104. URL: <u>http://trudymai.ru/published.php?ID=102091</u>

 Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Гидродинамика. - М.: Наука, 1988. Т. VI. - 731 с.

Дразин Φ. Введение в теорию гидродинамической устойчивости. - М.: Физмалит,
 2005. - 288 с.

Хатунцева О.Н. О природе детерминированного хаоса в математике //
 Естественные и технические науки. 2017. № 11. С. 255 - 257.

8. Ларина Е.В., Крюков И.А., Иванов И.Э. Моделирование осесимметричных струйных течений с использованием дифференциальных моделей турбулентной вязкости // Труды МАИ. 2016. № 91. URL: <u>http://trudymai.ru/published.php?ID=75565</u>

9. Кудимов Н.Ф., Сафронов А.В., Третьякова О.Н. Численное моделирование взаимодействия многоблочных сверхзвуковых турбулентных струй с преградой // Труды МАИ. 2013. № 70. URL: <u>http://trudymai.ru/published.php?ID=44440</u>

10. Кравчук М.О., Кудимов Н.Ф., Сафронов А.В. Вопросы моделирования турбулентности для расчета сверхзвуковых высокотемпературных струй // Труды МАИ. 2015. № 82. URL: http://trudymai.ru/published.php?ID=58536

11. Ву М.Х., Попов С.А., Рыжов Ю.А. Проблемы моделирования течения в осевых вентиляторах аэродинамических труб // Труды МАИ. 2012. № 53. URL: http://trudymai.ru/published.php?ID=29361

12. До С.З. Численное моделирование вихрей в течении Куэтта-Тейлора сжимаемого газа // Труды МАИ. 2014. № 75. URL: <u>http://trudymai.ru/published.php?ID=49670</u>

13. Крупенин А.М., Мартиросов М.И. Верификация численной модели
взаимодействия прямоугольной пластины с поверхностью воды // Труды МАИ.
2014. № 75. URL: http://trudymai.ru/published.php?ID=49676

14.Крупенин А.М., Мартиросов М.И. Численное моделирование поведения трехслойной прямоугольной пластины при вертикальном ударе о жидкость // Труды МАИ. 2013. № 69. URL: <u>http://trudymai.ru/published.php?ID=43066</u>

15. Махров В.П., Глущенко А.А., Юрьев А.И. Влияние гидродинамических особенностей на поведение свободной поверхности жидкости в высокоскоростном потоке // Труды МАИ. 2013. № 64. URL: <u>http://trudymai.ru/published.php?ID=36423</u> 16. Dehaeze F., Barakos G.N., Batrakov A.S., Kusyumov A.N., Mikhailov S.A. Simulation of flow around aerofoil with DES model of turbulence // Труды МАИ. 2012. № 59. URL: <u>http://trudymai.ru/published.php?ID=34840</u>

17. Варюхин А.Н., Овдиенко М.А. Верификация программного комплекса OpenFOAM на задачах моделирования глиссирования морских летательных // МАИ. аппаратов Труды 2019. № 104. URL: http:// http://trudymai.ru/published.php?ID=102108

18. Маркина Н.Л. Алгоритмы численного решения уравнений Навье-Стокса при наличии кавитации // Труды МАИ. 2011. № 44. URL: http://trudymai.ru/published.php?ID=25052

19. Овдиенко М.А. Разработка расчетной модели глиссирования гидросамолета, оснащенного автоматически управляемыми интерцепторами // Труды МАИ. 2018. № 103. URL: http://trudymai.ru/published.php?ID=100571

20. Березко М.Э., Никитченко Ю.А., Тихоновец А.В. Сшивание кинетической и гидродинамической моделей на примере течения Куэтта // Труды МАИ. 2017. № 94. URL: <u>http://trudymai.ru/published.php?ID=80922</u>

21. Усачов А.Е., Мазо А.Б., Калинин Е.И., Исаев С.А., Баранов П.А., Семилет Н.А. Повышение эффективности численного моделирования турбулентных отрывных течений с помощью применения гибридных сеток со структурированными разномасштабными блоками и неструктурированными вставками // Труды МАИ. 2018. № 99. URL: http://trudymai.ru/published.php?ID=92088

22. Menter F.R. Zonal two equation k-w turbulence models for aerodynamic flows, AIAA Paper, 1993, N93-2906, pp. 21.

23. Shih T.-H., Liou W.W., Shabbir A., Yang Z., and Zhu J. A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows // Computers and Fluids, 1995, vol. 24, no. 3, pp. 227 – 238.

24. Spalart P.R., Allmares S.R. A one-equation turbulence model for aerodynamic flows, AIAA. Paper 92-0439 // 30 Aerospace Sciences Meeting and Exhibit, Reno, NV, 1992. DOI: 10.2514/6.1992-439.

25. Daly B.J., Harlow F.H. Transport Equations in Turbulence // Physics of Fluids, 1970, no. 13, pp. 2634 – 2649.

26. Menter F.R., Langtry R.B., Likki S.R., Suzen Y.B., Huang P.G., and Volker S. Correlation Based Transition Model Using Local Variables. Part 1. Model Formulation, ASME-GT2004-53452, 2004, pp. 413 – 422.

27. Launder B.E., Reece G.J., Rodi W. Progress in the Development of a Reynolds-Stress Turbulence Closure // Journal of Fluid Mechanics, April 1975, vol. 68, no. 3, pp. 537 – 566.

28. Spalart P.R. Strategies for turbulence modeling and simulation // International Journal of Heat and Fluid Flow, 2000, vol. 21, no. 3, pp. 252 – 263.

29. Launder B.E., Spalding D.B. Lectures in Mathematical Models of Turbulence, London, Academic Press, 1972, 169 p.

30. Wilcox David C. Turbulence Modeling for CFD. Second edition, Anaheim: DCW Industries, 1998, 174 p.

31. Yakhot V., Orszag S.A., Thangam S., Gatski T.B., Speziale C.G. Development of turbulence models for shear flows by a double expansion technique // Physics of Fluids, 1992, vol. 4, no. 7, pp. 510 – 520.

32. Лифшиц Е.М., Питаевский Л.П. Теоретическая физика. Физическая кинетика. -М.: Наука, 2002. - 536 с.

33. Хатунцева О.Н. О влиянии учета изменения плотности вероятности случайных величин на динамику стохастического процесса // Физико-химическая кинетика в

газовой динамике. 2012. Т. 13. № 3. URL: <u>www.chemphys.edu.ru/pdf/2012-11-20-</u> 010.pdf.

34. Хатунцева О.Н. Описание динамики марковских процессов в расширенном пространстве переменных // Ученые записки ЦАГИ. 2011. Т. XLII. № 1. С. 62 - 85.

35. Шлихтинг Г. Теория пограничного слоя. - М.: Наука, 1974. - 712 с.