Анализ комбинированных способов формирования орбит искусственного спутника планет

Соколов Н.Л.

Центральный научно исследовательский институт машиностроения, ЦНИИмаш, ул. Пионерская, 4, Королев, Московская область, 141070, Россия e-mail: sokolov@mcc.rsa.ru

Аннотация

Исследуются различные комбинированные схемы выведения космических аппаратов (КА) на орбиты искусственного спутников Марса и Юпитера, предусматривающие проведение ракетодинамических маневров в сочетании с аэродинамическим торможением КА в атмосфере, а также схема, заключающаяся в формировании орбит ракетодинамическим способом. В качестве основных критериев оценки альтернативных схем рассматриваются минимум суммарных энергетических затрат и максимум физически реализуемых коридоров входа КА в атмосферу.

Энергетические затраты в случаях применения таких схем в 3-3.5 раз меньше по сравнению с ракетодинамическими схемами при выведении на спутниковые орбиты Марса и в 7-10 раз меньше при выведении на орбиты Юпитера. Установлено, что при входе КА в атмосферу в окрестности нижней границы коридора целесообразно проведение ракетодинамической коррекции траектории движения. Еще большее сокращение энергозатрат может быть получено для схемы с

многократным прохождением КА верхних слоев атмосферы. Вместе с тем, при использовании данной схемы значительно увеличивается время формирования спутниковых орбит.

Ключевые слова: космический аппарат, спутниковые орбиты, оптимальное управление, минимум потребных энергозатрат, максимум ширины коридора входа.

Введение

Наряду с использованием спускаемых аппаратов, получающих информацию о характеристиках планет в процессе зондирования их атмосфер, одним из наиболее эффективных путей исследования припланетного пространства является применение орбитальных КА [1-3]. Учитывая длительное время функционирования таких КА на спутниковых орбитах, представляется возможным получение уникальных научных данных о характеристиках исследуемых планет.

Известны различные способы выведения КА на спутниковые орбиты. Наиболее простым в реализации и неоднократно апробированным на практике является способ, предусматривающий перевод аппарата с гиперболической подлетной траектории к планете на ее спутниковую орбиту за счет гашения энергии путем проведения активных маневров [1,4-6].

Значительный энергетический выигрыш может быть получен при использовании комбинированных способов формирования спутниковых орбит, предусматривающих проведение ракетодинамических маневров в сочетании с

аэродинамическим торможением КА в атмосфере [7]. В настоящей статье рассматриваются различные комбинированные способы выведения КА на орбиты искусственного спутника Марса (ИСМ) и Юпитера (ИСЮ):

-заключающиеся в предварительном аэродинамическом торможении аппарата в плотных слоях атмосферы с последующей подачей разгонного импульса характеристической скорости в апоцентре переходной орбиты ΔV_a ;

-предусматривающие совместное управление КА аэродинамическими и ракетодинамическими силами на атмосферном участке полета;

-осуществляющие многократные прохождения КА верхних слоев атмосферы планеты с повитковыми коррекциями высот перицентров орбит.

Постановка задачи

Движение КА описывается системой уравнений, по аналогии с работами [7,8]:

$$\frac{\rho V^2 C_x(\alpha) S}{2m} - g \sin\theta - \omega^2 r \cos\varphi (\sin\varphi \sin\varepsilon \cos\theta - \cos\varphi \sin\theta) + \frac{P}{m} \cos\alpha \cos\beta,$$
$$\frac{d\theta}{dt} = \frac{\rho V C_y(\alpha) S}{2m} \cos\gamma - \frac{g}{V} \cos\theta + \frac{V}{r} \cos\theta + 2\omega \cos\varphi \cos\varepsilon + \frac{\omega^2 r}{V} \cos\varphi \Box$$
$$\Box (\sin\varphi \sin\varepsilon \sin\theta + \cos\varphi \cos\theta) + \frac{P}{mV} \sin\alpha \cos\beta,$$

$$\frac{d\varepsilon}{dt} = \frac{\rho V C_{y}(\alpha) S}{2m} \frac{\sin \gamma}{\cos \theta} - \frac{V}{r} \cos \theta \cos \varepsilon tg \, \varphi - \frac{2\omega}{\cos \theta} (\cos \theta \sin \varphi - \sin \varphi \sin \varphi) - \frac{\omega^{2} r}{V} \sin \varphi \cos \varphi \cos \varepsilon tg \, \varphi - \frac{2\omega}{\cos \theta} (\cos \theta \sin \varphi - \sin \varphi) - \frac{\omega^{2} r}{V} \sin \varphi \cos \varphi \cos \varepsilon + \frac{P}{mV \cos \theta} \sin \beta,$$

$$\frac{dh}{dt} = V \sin \theta, \qquad \frac{d\lambda}{dt} = \frac{V}{r} \frac{\cos \theta \cos \varepsilon}{\cos \varphi}, \qquad \frac{d\varphi}{dt} = \frac{V}{r} \cos \theta \sin \varepsilon,$$

$$\frac{dm}{dt} = -\frac{P}{P_{y\partial}g_{\beta}} - C_{1}S_{y^{H}} \frac{q_{\kappa o H \theta} + aq_{pa \partial}}{\eta} - \frac{e^{\sigma}T_{p}^{4}}{\eta}$$

$$r = R + h, \qquad g = \frac{\mu}{r^{2}}, \qquad K_{\delta} = \frac{C_{y}(\alpha)}{C_{x}(\alpha)}, \qquad P_{x} = \frac{m}{C_{x}(\alpha)S}. \qquad (1)$$

Здесь V - скорость полета КА, heta - угол наклона вектора скорости к местному горизонту, є - угол между проекцией вектора скорости на местный горизонт и местной параллелью, h - высота полета, λ и φ - геоцентрические долгота и широта подспутниковой точки КА, соответственно, m - масса КА, t - время полета, ρ плотность атмосферы, C_x и C_y - аэродинамические коэффициенты лобового сопротивления и подъемной силы, соответственно; S - площадь миделева сечения, R - радиус планеты, g - ускорение свободного падения, ω - угловая скорость вращения планеты, μ - гравитационный параметр, α - угол атаки, γ - угол крена, K_{δ} - аэродинамическое качество, P_x - приведенная нагрузка на лобовую поверхность КА, Р - тяга двигательной установки, $P_{y\partial}$ - удельная тяга двигательной установки, β - угол между вектором тяги двигательной установки и плоскостью движения КА, $q_{_{KOH6}}$ - конвективный тепловой поток, $q_{_{pad}}$ - радиационный тепловой С₁ - усредненный коэффициент, учитывающий неравномерность поток, распределения уносимой массы на поверхности КА, S_{yh} - площадь поверхности КА, которой происходит унос массы, а - коэффициент, характеризующий С

поглощающую способность материала, e - коэффициент, характеризующий излучающую способность материала, σ - постоянная Стефана - Больцмана, T_p - температура разрушения материала теплозащитного покрытия, η - эффективная энтальпия.

Решается задача минимизации потребных энергетических затрат (или минимума расходуемой массы топлива: $J = \Delta m_T = min$).

Кроме того, в качестве критерия оптимальности использовался максимум коридора входа КА в атмосферу. Эта задача сводится к определению минимума и максимума граничных значений высот условного перицентра h_{π} траекторий входа:

$$\min h_{\pi}^{H} = \min \left[\frac{r_{0}^{2} V_{0}^{2} \cos^{2} \theta_{0}^{H}}{\mu(e+1)} - R \right] \qquad \text{или} \qquad \min h_{\pi}^{B} = \max \left[\frac{r_{0}^{2} V_{0}^{2} \cos^{2} \theta_{0}^{B}}{\mu(e+1)} - R \right],$$

где е – эксцентриситет полетной орбиты.

Начальными условиями траекторий движения КА являются координаты полета КА в момент его входа в атмосферу *t*₀

$$V(t_0) = V_{0,} \quad \theta(t_0) = \theta_{0,} \quad \varepsilon(t_0) = \varepsilon_{0,} \quad h(t_0) = h_{0,}$$
$$\lambda(t_0) = \lambda_{0,} \quad \varphi(t_0) = \varphi_{0,} \quad m(t_0) = m_{0,}$$

Конечными значениями траекторий являются координаты полета КА в момент формирования заданной орбиты с радиусами апоцентра r_a и перицентра r_{π} .

Управление движением КА осуществляется путем изменения углов крена γ , атаки *а* и вектора тяги двигательной установки \vec{P} .

Сформулируем задачу оптимального управления: для КА, движение которого описывается уравнениями (1) требуется определить законы управления углами

крена, атаки и тягой двигательной установки, при которых аппарат переходит из начального положения в конечное при достижении экстремума функционала.

Для способа КА комбинированного выведения на орбиты, предусматривающего предварительное торможение в атмосфере, основной критерий оптимальности $J = \Delta m_T = min$ определяется в момент завершения формирования орбиты. Очевидно, что задача минимизации расходуемой массы топлива Δm_{τ} эквивалентна задаче максимизации скорости КА в апоцентре переходной орбиты V_a . Нетрудно видеть, что условием достижения $V_a = max$ будет являться обеспечение максимальной скорости КА при его вылете из атмосферы $V_{\kappa} = max$ в сочетании с возможностью выведения аппарата на переходную орбиту с заданным радиусом апоцентра $r_{a_{3ad}}$. Формально условием выведения КА на переходную орбиту с заданным радиусом апоцентра r_{а зад} является выполнение соотношения, связывающего переменную $r_{a \, sad}$ со значениями скорости $V_{\kappa u}$, траекторного угла $\theta_{\kappa u}$ и радиус-вектора $r_{\kappa} = r_{\kappa u}$ в инерциальной системе координат в момент вылета аппарата из атмосферы [4,9]:

$$V_{\kappa\mu} = \sqrt{\frac{2\mu r_{\alpha 3 a \partial} \left(r_{\alpha 3 a \partial} - r_{\kappa}\right)}{r_{\kappa} \left(r_{\alpha 3 a \partial}^{2} - r_{\kappa}^{2} \cos^{2} \theta_{\kappa u}\right)}}$$
(2)

Тогда, в качестве конечной точки траектории будем рассматривать точку вылета КА из атмосферы с известным значением радиус-вектора КА.

$$r_{\kappa} = R + h_{amm},\tag{3}$$

где *R* – средний радиус планеты, *h*_{*атм*} – высота условной границы атмосферы.

Необходимые условия оптимальности

Задачи оптимального управления решались с помощью принципа максимума Понтрягина [10,11]. Гамильтониан и уравнения сопряженных переменных имеют вид:

$$H = \mathop{\mathbf{e}}_{i=1}^{6} f_{i} \Psi_{i} = -\frac{\rho V^{2} C_{x}(\alpha) S}{2m} \Psi_{1} + \frac{\rho V C_{y}(\alpha) S}{2m} \cos \gamma \Psi_{2} + \frac{\rho V C_{y}(\alpha) S}{2m \cos \theta} \sin \gamma \Psi_{3} + \frac{P}{m} \cos \alpha \cos \beta \Psi_{1} + \frac{P}{mV} \sin \alpha \cos \beta \Psi_{2} + \frac{P \sin \beta}{mV \cos \theta} \Psi_{3} - \frac{P}{P_{y\partial} g_{3}} \Psi_{7} + \Phi,$$

где Φ – функция, не зависящая в явном виде от управляющих параметров α и γ .

$$\frac{d\Psi_1}{dt} = -\frac{\P H}{\P V}, \quad \frac{d\Psi_2}{dt} = -\frac{\P H}{\P \theta}, \quad \frac{d\Psi_3}{dt} = -\frac{\P H}{\P \varepsilon}, \quad \frac{d\Psi_4}{dt} = -\frac{\P H}{\P h},$$
$$\frac{d\Psi_5}{dt} = -\frac{\P H}{\P} = 0, \quad \frac{d\Psi_6}{dt} = -\frac{\P H}{\P \phi}, \quad \frac{d\Psi_7}{dt} = -\frac{\P H}{\P m}.$$

Из условия максимума гамильтониана *H* получим формулы для определения законов оптимального управления углами крена, атаки, величины и ориентации вектора тяги двигательной установки:

$$\gamma = \operatorname{arctg} \frac{\Psi_{3}}{\Psi_{2} \cos \theta}, \qquad \frac{\P C_{y}}{\P \alpha} = \frac{V \Psi_{1} \cos \theta}{\Psi_{2} \cos \theta \cos \gamma + \Psi_{3} \sin \gamma}, \qquad P = \{ \begin{array}{l} P_{max} & npu \quad F > 0 \\ 0 & npu \quad F \ J \quad 0 \end{array}, \\ \alpha = \operatorname{arctg} \frac{\Psi_{2}}{V \Psi_{1}}, \qquad \beta = \frac{\Psi_{3}}{V \cos \theta \left(\cos \alpha \Psi_{1} + \sin \alpha \Psi_{2} / V \right)}, \\ F = \frac{\cos \alpha \cos \beta \Psi_{1}}{m} + \frac{\sin \alpha \cos \beta \Psi_{2}}{mV} + \frac{\sin \beta \Psi_{3}}{mV \cos \theta} - \frac{\Psi_{7}}{P_{y\theta} g_{3}}. \qquad (4)$$

Для способов выведения аппаратов на орбиты, не предусматривающих управление вектором тяги двигательной установки в атмосфере, законы управления параметрами P, α, β и зависимость для расчета сопряженной переменной Ψ_7 , не используются при определении оптимальных траекторий движения КА.

С учетом условия трансверсальности значения сопряженных переменных и гамильтониана в конечной точке траектории могут быть определены в соответствии с методиками, изложенными в работах [12,13]

50 km/cJ V_0 J 70 km/c, 100 kg/m²J P_x J 500 kg/m², 0,3J K_6 J 0,7. (6)

Таким образом, с помощью соотношения (4), определена структура оптимального управления углами крена, атаки и вектором тяги двигательной установки при обеспечении максимума скорости вылета КА из атмосферы на участке предварительного аэродинамического торможения. С использованием зависимостей (2), (3), (5) определяются граничные условия исследуемой траектории.

Оптимальное управление КА при выведении на спутниковые орбиты планеты с использованием аэродинамического маневра в атмосфере

Прежде всего, рассматривался способ формирования спутниковых орбит, предусматривающий предварительное аэродинамическое торможение КА и подачу разгонного импульса характеристической скорости в апоцентре переходной орбиты. Расчеты оптимальных траекторий движения КА проводились с применением метода, описанного в работе [14] и заключающегося в использовании принципа декомпозиции математических моделей с последующей разработкой аналитических зависимостей расчета оптимальных законов управления. Рассматривались экспоненциальные модели атмосферы Марса и Юпитера, описанные в работах [4,7].

Решение вариационных задач, проведенных в широком диапазоне условий входа КА в атмосферу и проектных характеристик аппаратов, позволило определить законы оптимального управления углами крена и атаки. Так в процессе движения КА в атмосфере Марса угол крена γ изменяется от $\gamma_0 \approx 3 \div 8^0$ до $\gamma \approx 172 \div 177^0$. Угол атаки α при входе КА в атмосферу принимает значение α^* , соответствующее значению аэродинамического качества K_{max} . Далее происходит уменьшение угла α , что способствует снижению подъемной силы и прохождению КА более плотных слоев атмосферы. Затем угол атаки α вновь снижается до величины α^* .

Анализ результатов показывает, что интенсивность изменения углов γ и α существенно зависит от высоты условного перицентра траектории входа аппарата в атмосферу h_{π} . Так, при увеличении h_{π} возрастание угла γ от практически нулевых величин до значений $172-177^0$ осуществляется на более раннем участке полета КА в атмосфере, а интенсивность изменения угла атаки снижается. При входе КА в атмосферу по верхней границе коридора h_{π}^{B} программа управления углами γ и α вырождается в движение КА с постоянными значениями этих углов: $\gamma \approx 175^0$ и $\alpha = \alpha^*$. При входе КА в атмосферу по нижней границе коридора h_{π}^{n} угол γ постоянен и близок к нулю, а изменения угла α от α^* до α_{min} и снова до α^* осуществляется с максимальной интенсивностью.

Показано, что при формировании круговой орбиты искусственного спутника Марса (ИСМ) высотой H = 500 км для КА, обладающего аэродинамическим качеством K = 0,43 и нагрузкой на лобовую поверхность $P_x = 300$ кг / м², учитывая возможный разброс параметров атмосферы, максимальный коридор входа Δh_{π} составляет ± 25 км. При этом, верхняя граница $h_{\pi}^{B} = h_{\pi \max} = 30$ км соответствует наименее плотной (минимальной) модели атмосферы, а нижняя граница $h_{\pi}^{\mu} = h_{\min} = -20$ км – наиболее плотной (максимальной) модели. Полученные значения коридора входа превосходит величину навигационного коридора (при использовании автономных систем навигации КА $\Delta h_{\pi}^{\mu a B} = \pm 10 \div 20$ км [1,4]).

Потребные энергозатраты ΔV на формирование орбит ИСМ существенно зависят от высоты условного перицентра. Причем, уменьшение высот h_{π} от верхней границы h_{π}^{s} сначала приводит к незначительному изменению затрат h_{π} , а затем – с приближением h_{π} к нижней границе h_{π}^{μ} – происходит интенсивный рост h_{π} (рис. 1).

Так, при изменении высоты h_{π} от 30 до -10 км энергозатраты ΔV практически не меняются и составляют $\Delta V \approx 145 \text{ м/c}$, дальнейшее снижение h_{π} до -20 км приводит к интенсивному росту значений ΔV до 280 м/с (H = 500 км). Зависимости $\Delta V(h_{\pi})$ имеют аналогичный характер и для случаев формирования более высоких орбит ИСМ. Представленные данные показывают, что энергетически оптимальным является осуществление входа КА в атмосферу вблизи верхней границы коридора.

Проведен анализ влияния значений аэродинамического качества на ширину физически реализуемых коридоров входа КА в атмосферу Δh_{π} и потребных энергетических затрат ΔV . Показано, что при $K_{\bar{o}} = 1,5$ значения Δh_{π} составляют ≈ 200 км, энергозатраты $\Delta V (h_{\pi}^{e}) \approx 140$ м/с, $\Delta V (h_{\pi}^{u}) \approx 340$ м/с При $K_{\text{max}} = 2,4 - \Delta h_{\pi} \approx 320$ км, $\Delta V (h_{\pi}^{e}) \approx 138$ м/с, $\Delta V (h_{\pi}^{u}) \approx 430$ м/с.

В целом, для широкого диапазона исходных данных и проектнобаллистических характеристик потребные энергозатраты ΔV не превышают 650м/с, а при входе КА в атмосферу вблизи верхних границ коридора h_{π}^{e} и формировании орбит ИСМ с высотами *H*, не более 500 км энергозатраты составляют ~140÷150 м/с. Для сравнения при применении ракетодинамической схемы формирования орбит, описанной в работах [1,4], энергозатраты достигают 2,5÷4 км/с.

Далее рассмотрим задачу максимизации скорости вылета КА из атмосферы при формировании орбит ИСЮ. Численное решение задачи по аналогии с работой [14] проводилось при варьировании начальных условий входа в атмосферу и проектно-баллистических параметров КА в следующих пределах:

50 км / с J V_0 J 70км / с, 100 кг / м² J P_x J 500 кг / м², 0,3 J K_5 J 0,7. (6) Рассматривались круговые орбиты с высотами $H \le 100$ тыс. км.

Важным условием реализации рассматриваемого способа формирования орбит является обеспечение ширины коридора входа КА в атмосферу Δh_{π} , большей, чем ширина навигационного коридора, составляющего при существующих

характеристиках систем навигации величину, равную $\Delta h_{\pi}^{\text{нав}} = 1100 \,\text{км}$ [1,4].

Среди исходных данных, используемых при расчете траекторий движения КА, наиболее сильно влияющим на ширину коридора входа, является аэродинамическое качество КА. При этом, верхняя граница коридора входа h_{π}^{s} практически не зависит от значения K_{δ} и составляет ~ - 155-165 км. Абсолютное значение нижней границы коридора ΔV_{max} , а следовательно и ширина коридора входа Δh_{π} , монотонно возрастают с увеличением значения K_{δ} : так рост качества K_{δ} от 0,2 до 0,6 приводит к изменению $h_{\pi}^{"}$ от ~ - 450 км до ~ - 1800 км при рассмотрении номинальной модели атмосферы. При использовании КА с $K_{\delta} = 0,6$ и рассмотрении «холодной» модели атмосферы абсолютная величина нижней границы коридора входа уменьшается и составляет ~ 1500-1600 км, а для «теплой» модели значение $\left|h_{\pi}^{\scriptscriptstyle H}\right|$ возрастает до ~ 2000-2100 км. Полученные данные позволяют сделать вывод, что значения коридора входа для КА с $K_{\delta} \ge 0.55$ превосходят величину навигационного коридора, что показывает возможность осуществления данного способа выведения таких КА на орбиты ИСЮ.

Далее проведем анализ потребных энергетических затрат на формирование орбит ИСЮ ΔV в зависимости от высот условного перицентра h_{π} , лежащих внутри физически реализуемого коридора входа $\Delta h_{\pi} = h_{\pi}^{e} - h_{\pi}^{\mu}$.

На рис. 2 приведены зависимости, позволяющие оценить энергозатраты ΔV для различных значений h_{π} при формировании круговых орбит ИСЮ. Видно, что существует достаточно значительный диапазон изменения высот h_{π} вблизи верхней границы коридора входа, где энергозатраты практически не меняются. Так, при выведении КА на орбиту высотой H = 10000 км изменение h_{π} от $h_{\pi}^{e} = -100$ км до $h_{\pi} = -1000$ км величина ΔV составляет ~ 300 м/с, дальнейшее изменение h_{π} до $h_{\pi}^{u} = -1600$ км приводит к увеличению энергозатрат до ~ 3 км/с, т.е. ~ в 4 раза. Потребные энергозатраты возрастают с ростом высот H. Так, для высоты H = 30000 км минимальные значения ΔV_{min} составляют ~ 650 м/с, а $\Delta V_{max} \square 3,2$ км/с.

В связи с этим, крайне важным представляется обеспечение ширины «горизонтального» участка зависимости $\Delta V(h_{\pi})$ большей, чем ширина навигационного коридора входа, равного 1100 км. Это может быть обеспечено при использовании КА с аэродинамическим качеством, достигающим 0,55-0,6.

Дадим сравнительную оценку энергозатратам, потребным на формирование орбит ИСЮ комбинированным и ракетодинамическим способами. Показано что, для КА с проектно-баллистическими характеристиками, удовлетворяющими условиям $K_{\delta} \ge 0,5$ и $P_x \le 500 \,\mathrm{kr} / \,\mathrm{m}^2$, подлетающими к атмосфере Юпитера с начальными скоростями $V_0 = 55 - 65 \,\mathrm{km} / \,\mathrm{c} \left(\Delta h_{\pi}^{\mu a \theta} = 1100 \,\mathrm{km}\right)$, энергетические затраты более чем в 15-20 раз меньше по сравнению с ракетодинамическим способом выведения на орбиты с высотами апоцентра $H \le 60000 \,\mathrm{km}$: значения ΔV при комбинированном способе, как уже отмечалось, составляют 600-1000 м/с, а при ракетодинамическом – достигают 15-18 тыс. км/с.

Резюмируя вышеизложенное следует отметить, что для КА, располагающих аэродинамическим качеством $K_{\delta} \ge 0,3$, реализуемый коридор входа КА в атмосферу Марса превосходит навигационный, что обеспечивает возможность осуществления предлагаемого способа управления. При исследовании задачи движения в атмосфере Юпитера требования к располагаемому аэродинамическому качеству КА возрастают: минимально допустимое значение K_{δ} достигает 0,55.

Оптимальное управление КА при его выведении на спутниковые орбиты с проведением ракетодинамической коррекции в атмосфере

Рассмотрим комбинированный способ выведения КА на спутниковые орбиты, предусматривающий проведение ракетодинамических коррекций траекторий движения на начальных участках полета в атмосфере. Разработка такого способа направлена на расширение физически реализуемого коридора входа в атмосферу Δh_{π} без увеличения суммарных энергетических затрат.

Принципиальная возможность увеличения коридора входа Δh_{π} за счет

реализации ракетодинамической коррекции движения КА в атмосфере обусловлена выявленными особенностями зависимостей потребных энергозатрат ΔV от высоты условного перицентра траектории входа h_{π} , представленных на рис. 1. и рис. 2. Видно что, уменьшение высот h_{π} вблизи нижних границ коридора h_{π}^{μ} приводит к резкому возрастанию энергозатрат $\Delta V :\square$ в 1,5-2 раза при выведении на орбиты ИСМ и ~ 4 раза при формировании орбит ИСЮ.

В связи с этим, представляется энергетически рациональной реализация своевременного приложения аппарату, движущемуся вблизи нижней границы коридора, соответствующего импульса скорости. Это обеспечивает возможность движения КА в более разряженных слоях атмосферы и тем самым снижает интенсивность его торможения. Сразу после входа в атмосферу моделируется малая коррекция движения КА. Далее рассчитываются две оптимальные траектории (1 – с проведением коррекции, 2 – без ее проведения) из условия обеспечения минимумов энергозатрат на формирование заданных спутниковых орбит ΔV_{1min} и ΔV_{2min} . Если энергозатраты ΔV_{2min} превосходят значение ΔV_{1min} более чем на ΔV_a , то делается вывод об целесообразности проведения коррекции движения КА в атмосфере. В противном случае корректирующий импульс ΔV_a не подается. При установлении эффективности проведения коррекции последовательно увеличивая значение ΔV_a рассчитываются соответствующие оптимальные траектории и определяются минимумы суммарных потребных энергозатрат $\Delta V_{\Sigma min}$. Процесс продолжается до тех пор, пока последующее значение $\Delta V_{\Sigma min}$ не будет больше предыдущего.

Проведенные расчеты показали, что оптимальное управление КА,

обеспечивающее минимум суммарных потребных энергетических затрат $\Delta V_{\Sigma min}$ заключается в следующем. Осуществляется однократное включение двигательной установки в момент входа аппарата в атмосферу. Вектор тяги α направлен под углом ~ 85÷88° к вектору скорости, угол принимает нулевой значение. В процессе активного участка угол ΔV_a уменьшается ~ 2÷3°. Аэродинамическое качество $K_{s\phi}$ переключается один раз с $+K_{\delta}$ на $-K_{\delta}$.

Показано, что для КА, располагающего аэродинамическим качеством $K_{\delta} = 0,34$ и приведенной нагрузкой на лобовую поверхность $P_x = 300 \text{ kr} / \text{ m}^2$ при входе в атмосферу в диапазоне изменения высот условного перицентра h_{π} от - 20 км до - 15 км и выведении на круговую орбиту искусственного спутника Марса высотой H = 500 км снижение потребных энергозатрат $\Delta V_{\Sigma min}$ достигает 80 м/с за счет проведения коррекции движения аппарата в атмосфере (см. рис. 3).

Применение такого способа выведения КА на орбиту также позволяет расширить коридор входа в атмосферу при фиксированных энергозатратах. Так при значениях $\Delta V_{\Sigma} = 280$ м/с подача импульса скорости ΔV_a приводит к снижению

нижней границы h_{π}^{μ} от -20 км до -25 км и к увеличению коридора входа более, чем на 10%. Аналогичный характер имеют зависимости $\Delta V_{\Sigma}(h_{\pi})$ и при выведении КА на более высокие орбиты ИСМ. При этом, снижение суммарных энергозатрат ΔV_{Σ} за счет коррекции движения КА в атмосфере несколько уменьшается с ростом высот круговых орбит *H*. Расширение коридора входа КА в атмосферу для всего рассматриваемого диапазона высот орбит *H* составляет 8-10%.

На рис. 4. представлены зависимости, характеризующие область снижения суммарных потребных энергетических затрат при проведении коррекций траекторий движения КА в атмосфере при формировании круговых орбит ИСЮ.

Так, для КА с аэродинамическим качеством $K_{\bar{o}} = 0,6$ и нагрузкой на лобовую поверхность $P_x = 300 \,\mathrm{kr} / \mathrm{m}^2$, входящего в атмосферу Юпитера со скоростью $V_0 = 60 \,\mathrm{km} / c$ в диапазоне высот условного перицентра h_{π} от -1000 км до -1600 км при выведении на круговую орбиту ИСЮ высотой $H = 10000 \,\mathrm{km}$ может быть достигнуто снижение потребных энергозатрат до ~ 1 км/с за счет проведения коррекции движения аппарата.

Кроме того, при выведении КА на круговую орбиту ИСЮ высотой H = 10000 км, физически реализуемый коридор входа может быть увеличен ~ на 300 км при сохранении заданной величины энергозатрат ΔV_{Σ} , равной 3 км/с. Снижение суммарных энергозатрат ΔV_{Σ} или увеличение коридора входа Δh_{π} обеспечивается за счет подачи импульса характеристической скорости ΔV_a , лежащего в диапазоне от ~ 50 м/с при $h_{\pi} = -1000$ км до ~ 650 м/с при $h_{\pi} = -1900$ км.

В целом, проведенные исследования в широком диапазоне изменения проектно-баллистических и энергетических характеристик КА, условий входа в атмосферу и высот формируемых орбит искусственных спутников Марса и Юпитера показали, что в значительной области высот условного перицентра, находящейся в окрестности нижней границы коридора входа, проведение ракетодинамической коррекции траекторий движения аппарата в атмосфере может привести к существенному выигрышу как с точки зрения снижения суммарных энергетических затрат, так и с точки зрения расширения коридора входа.

Выведение КА на спутниковые орбиты по схеме с его многократным прохождением верхних слоев атмосферы

Рассмотренные комбинированные способы, предусматривают необходимость управления КА в атмосфере аэродинамическим качеством. Это сопровождается необходимостью решения ряда сложных технических проблем: создания систем управления, проведения непрерывной идентификации параметров движения и т.д.

В связи с этим, представляется целесообразным использование

комбинированного способа управления КА, обладающего достоинствами рассматриваемых ранее способов (гашение скорости КА за счет его торможения в атмосфере) в сочетании с использованием простых программ полета аппарата, не требующих использования систем управления аэродинамическим качеством.

Суть предлагаемого комбинированного способа заключается в многократном прохождении КА верхних слоев атмосферы планеты. При этом осуществляется последовательное снижение высот апоцентра и проведение повитковых коррекций высот перицентра переходных орбит.

Применение рассматриваемого способа позволяет сократить энергозатраты $\Delta V \square$ на 15÷20% по сравнению со способами, предусматривающими вход КА в атмосферу вблизи верхней границы коридора. Уменьшение энергозатрат ΔV обеспечивается при входе КА в атмосферу с меньшими по абсолютной величине углами θ_0 . Так, для входа КА в атмосферу Марса с траекторным углом $\theta_0 = -5,5^{\circ}$, при формировании круговой орбиты ИСМ высотой H = 500 км, энергозатраты ΔV составляют ~ 125 м/с, а при угле $\theta_0 = -4,5^{\circ}$ значения ΔV снижаются до ~ 115 м/с.

С точки зрения снижения времени выведения КА T_{Σ} представляется целесообразным осуществление входа КА в атмосферу с максимально допустимым по модулю углом θ_0 с учетом ограничений по перегрузкам, температурам и радиационным потокам. Проведенные расчеты показывают, что при входе космического аппарата с $P_x = 100 \div 500$ кг / м² в атмосферу Марса под углом $\theta_0 = -5^0$ время выведения на круговую орбиту высотой H = 500 кг составляет 14÷17 часов. Изменение угла θ_0 до -4^0 приводит к росту времени T_{Σ} до 20÷23 часов.

При выведении КА на спутниковые орбиты с большими значениями высот H как энергетические затраты ΔV , так и время T_{Σ} снижаются. Формирование круговых орбит ИСМ высотой H = 2000 кг км может быть реализовано при энергозатратах ΔV составляющих 105÷110 м/с. В этом случае продолжительность выведения T_{Σ} уменьшается до 11÷13 часов при $\theta_0 = -5^0$ и до 17÷19 часов при $\theta_0 = -4^0$.

В табл.1 приведены характерные параметры траектории выведения КА на круговую орбиту ИСМ, высотой H = 500км. Для каждого витка полета Nприводятся значения скорости V_0 и траекторного угла входа КА в атмосферу θ_0 ; высоты h_p и скорости V_p движения аппарата в момент рикошета траектории полета; максимальной перегрузки n_{max} , действующей на аппарат; скорости V_k и траекторного угла θ_k при вылете КА из атмосферы; скорости V_a и радиуса r_a в апоцентре переходной орбиты; величины корректирующих импульсов ΔV_a и время полета КА на данном витке формирования орбиты T.

Табл. 1.

Основные характеристики траектории выведения КА на спутниковую орбиту Марса

Ν	V_0	$ heta_{_0}$,	h_p ,	V_p ,	n _{max}	V_{κ} ,	θ_{κ} ,	V_a ,	r_a ,	ΔV_a ,	Τ,
витка	км/с	град	КМ	км/с		км/с	град	км/с	КМ	м/с	час
1	6,0	-5,0	78,37	5,28	2,39	4,56	4,92	0,939	16732	1	8,58

$$\left(K_{\tilde{o}}=0, P_{x}=300\,\mathrm{kr}\,/\,\mathrm{m}^{2}\right)$$

2	4 57	-4.82	94 57	4 29	1 75	4 01	A 79	1.88	7598	Δ	3 4 8
2	ч,57	-4,02	77,57	7,27	1,75	7,01	ч,/)	1,00	1570	-	5,40
2	1 02	1 11	07 42	2 97	1 24	271	1 10	2.02	1280	0	2.00
3	4,05	-4,41	97,42	3,07	1,24	3,71	4,40	2,93	4309	9	2,09
1	274	1 15	07.92	2 65	0.02	256	4 1 1	2 01	2005	106	1 00
4	3,74	-4,13	97,82	3,03	0,95	3,30	4,11	3,21	3093	100	1,00

Итого: $\Delta V_{\Sigma} = 120 \,\mathrm{m} \,/ \,\mathrm{c}, \ T_{\Sigma} = 16,03 \,\mathrm{чac}$

Показано, что при входе КА в атмосферу с углом $\theta_0 = -5$ формирование орбиты ИСМ осуществляется в течение 4-х витков. Время выведения превышают 16 часов, а энергозатраты ΔV_{Σ} составляют 120 м/с. Для каждого последующего витка формирования орбиты имеет место снижение значений $V_0, |\theta_0|, V_p, V_{\kappa}, \theta_{\kappa}$ и увеличения высот рикошета h_p . Максимальное значение перегрузки, действующей на КА в атмосфере, не превышает 2,4. Показано, что около 90% суммарных потребных энергозатрат ΔV_{Σ} приходится на проведение заключительного импульса, подаваемого в апоцентре последней переходной орбиты.

Таким образом, при реализации рассмотренного способа достигается значительное снижение потребных энергозатрат при возрастании продолжительности формировании орбит. При этом обеспечивается наиболее комфортный режим полета КА в атмосфере: максимальные значения перегрузок, температур и радиационных потоков достигают абсолютных минимальных величин по сравнению с аналогичными характеристиками для других способов.

Выводы

Представленные результаты позволяют сделать следующие выводы:

1. Проведены оценки возможностей и анализ энергетической эффективности применения различных комбинированных способов выведения КА на орбиты

Юпитера. Общим искусственных спутников Mapca И признаком всех комбинированных способов является проведение предварительного аэродинамического торможения КА в атмосфере и подача разгонных импульсов в апоцентрах переходных орбит. Отличительными особенностями различных способов являются либо реализация управляемого аэродинамического маневра КА, либо КА совместное управление В атмосфере аэродинамическими И ракетодинамическими силами, либо многократные прохождения КА верхних слоев атмосферы. Показан значительный энергетический выигрыш применения этих способов по сравнению с ракетодинамическим способом, где гашение скорости аппарата осуществляется в результате выполнения активных маневров. В целом, при выведении КА на орбиту ИСМ потребные энергозатраты сокращаются ~ в 6-10 раз, а при формировании орбит ИСЮ - ~ в 15-20 раз.

2. При формировании круговых орбит ИСМ с высотами 400-500 км для широкого диапазона изменения проектных параметров энергозатраты ΔV при входе КА в близи верхней границы коридора не превышают 140-150 м/с. Применение КА $K_{6} \ge 0,3$ аэродинамическим качеством позволяет обеспечить физически С реализуемый коридор входа больший, чем навигационный и тем самым обеспечить возможность построения заданных орбит. При выведении КА на орбиты ИСЮ абсолютный минимум потребных энергозатрат ΔV составляет ~600-650 м/с и в сочетании с обеспечением требуемых коридоров входа, реализуется при использовании аппаратов с K_{δ} , не менее 0,55.

3. Проведен анализ условий эффективного применения комбинированного

способа выведения КА на спутниковые орбиты, предусматривающего проведения ракетодинамической коррекции движения в атмосфере. Разработан метод расчета оптимальных траекторий при совместном управлении КА аэродинамическим качеством и тягой двигательной установки. Новизна метода заключается в применении схемы итерационного сопряжения решений частных вариационных задач для последовательно задаваемых значений импульсов скорости ΔV_a . Показано, что при входе КА в атмосферу вблизи нижней границы коридора применение данного способа позволяет, как снизить потребные энергозатраты ΔV_{Σ} , так и расширить коридор входа Δh_{π} . Так, для КА с аэродинамическим качеством $K_{\phi} = 0,34$ и приведенной нагрузкой $P_x = 200 - 500 \,\mathrm{kr} \,/\,\mathrm{m^2}$ при формировании круговых орбит ИСМ с высотами H = 500 - 5000 км достигается снижение энергозатрат до ~ 80 м/с или расширение коридора входа на ~ 5-10 км. При выведении КА с $K_{\delta} = 0,55 - 0,6$ и $P_x = 200 - 300$ км/с на орбиты ИСЮ высотами до 50000 км. проведение коррекций траекторий движения в атмосфере позволяет снизить потребные энергозатраты ~ до 1 км/с или расширить коридор входа ~на 300 КМ.

3. Разработана методика расчета траекторий выведения на спутниковые орбиты при применении комбинированного способа с многократным прохождением КА верхних слоев атмосферы. Показано, что реализация этого способа даже при использовании простых в изготовлении аппаратов баллистического типа обеспечивает наибольшее снижение потребных энергетических затрат ΔV_{Σ} . Так, при

формировании круговых орбит ИСМ с высотами H = 500 - 2000км энергозатраты ΔV_{Σ} не превышают 105-120 м/с, что на 15-25% меньше, чем для других рассмотренных комбинированных способов выведения КА на орбиты. При этом, достигается наиболее комфортные режимы движения КА в атмосфере: так, например, максимальные перегрузки не превышают 2,5 единиц. Вместе с тем, при осуществлении такого способа продолжительность формирования орбит искусственного спутника планет достаточно велика и может достигать 20-23 часов.

Библиографический список

 Эйсмонт Н.А. Оптимальное управление космическим аппаратом, переводимым с гиперболической траектории на орбиту спутника планеты торможением в атмосфере // Космические исследования. 1972. Т.10. № 2. С. 290-292.

Константинов М.С., Нгуен Д.Н. Оптимизация траекторий КА с ЭРДУ к
 Юпитеру с гравитационным маневром в рамках задачи трех тел // Труды МАИ,
 2014, № 72: http://www.mai.ru/science/trudy/published.php?ID=47349

3. Космодемьянский Е.В., Кириченко А.С., Клюшин Д.И., Космодемьянская О.В., Макушев В.В., Альмурзин П.П. Инновационный формат организации миссий по выведению малых космических аппаратов // Труды МАИ, 2015, № 74: http://www.mai.ru/science/trudy/published.php?ID=49243

4. Иванов Н.М. Мартынов А.И. Управление движением космического аппарата в атмосфере Марса. - М.: Наука, 1977. – 415 с.

5. Михалев С.М. Аэрокосмическая система для межконтинентальных

перелетов // Труды МАИ, 2015, № 81: http://www.mai.ru/science/trudy/published.php?ID=57773

Константинов М.С., Мин Т. Оптимизация траекторий выведения космического аппарата на рабочую гелиоцентрическую орбиту // Труды МАИ, 2013, № 67: http://www.mai.ru/science/trudy/published.php?ID=41510

7. Иванов Н.М., Мартынов А.И., Соколов Н.Л. Оптимальное управление КА при выведении на орбиту искусственного спутника Юпитера комбинированным способом // Космические исследования. 1982. Т. 20. № 2. С. 211-222.

Андриевский В.В. Динамика спуска космических аппаратов на Землю. М.: Машиностроение, 1970. - 235 с.

 Авдуевский В.С., Антонов Б.М., Анфимов Н.А. и др. Основы теории полета космических аппаратов. - М.: Машиностроение, 1972. – 345 с.

Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф.
 Математическая теория оптимальных процессов. - М.: Наука, 1969. – 384 с.

Кувшинова Е.Ю. Методика определения оптимальной траектории перелета
с малой тягой между околоземной и около лунной орбитами // Труды МАИ, 2013, №
68: http://www.mai.ru/science/trudy/published.php?ID=41742

12. Летов А.М. Динамика полета и управление. - М.: Наука, 1969. – 360 с.

13. Пантилеев А.В., Летова Т.А., Помазуева Е.А. Применение методов глобальной оптимизации параметрического обобщенного для синтеза пропорционально - интегрально - дифференциального регулятора в задаче // Труды МАИ, 2015, 79: управления полетом №

http://www.mai.ru/science/trudy/published.php?ID=55635

14. Соколов Н.Л. Оптимальное управление космическим аппаратом при формировании орбиты искусственного спутника Марса // Фундаментальные исследования. 2015. № 3. С. 133-138.