Сравнение явных и неявных разностных схем расчета химически неравновесных процессов в соплах

Крюков В.Г.*, Абдуллин А.Л.**, Демин А.В.***, Сафиуллин И.И.****

Казанский национальный исследовательский технический университет имени А.Н. Туполева, улица К. Маркса, 10, Казань, 420111, Россия *e-mail: <u>vkrioukov@mail.ru</u> **e-mail: <u>ala2000@mail.ru</u> **e-mail: <u>alexei_demin@mail.ru</u>

****e-mail: <u>saf-iskander@rambler.ru</u>

Аннотация

В работе для модели химически неравновесных течений в соплах двигателей летательных аппаратов проведено сравнение явных и неявных схем расчета. С этой целью параллельно с расчетом течения в сопле вычисляются «траектории» собственных значений уравнений химической кинетики. Численные исследования проводились для неравновесных течений продуктов сгорания топлив ЖРД и РДТТ. Расчеты показали, что обычные явные схемы неприемлемы из-за чрезмерно большого числа шагов интегрирования, но для малых давлений и небольших сопел допустимо применение «продвинутых» явных методов.

Ключевые слова: химически неравновесные течения, сопла двигателей, математическая модель, собственные значения.

Введение

Известно, что в соплах ДЛА может иметь место значительная химическая неравновесность. Прогнозирование этого эффекта является интересной научноприкладной задачей. Ее решение позволяет определить по длине сопла: состав рабочего тела (включая вредные вещества), электрофизические характеристики, а также потери удельного импульса из-за отклонения от химического равновесия. Эта проблема рассматривалась во множестве публикаций в России [1, 2, 3, 4], и за рубежом [5,6]. В принципе, в нашей стране эта задача была решена Пирумовым У. Г.. Он первым сформировал математическую модель неравновесных течений (включающую уравнения течения газа и химической кинетики), а также разработал неявную численную схему, использующую матрицу Якоби [7]. Кроме того, он показал, что (для типовых топлив ЖРД) уравнения химической кинетики при высоких значениях температуры и давления на входе в сопло ($P_{oc} \approx 100$ атм.; $T_{oc} \approx$ 3000К) являются очень «жесткими» и использование явных схем типа Рунге-Кутта приведет к чрезвычайно малым шагам интегрирования (из-за ограничения по устойчивости).

Однако известно, что явные схемы являются менее сложными, чем неявные, и поэтому продолжаются исследования с целью расширения области их устойчивости. В последние годы рядом авторов в этом направлении был достигнут заметный прогресс [8, 9, 10], и область приложения явных методов расширяется. Поэтому интересными применительно к соплам ДЛА являются задачи:

- определения, при каких параметрах и для каких реагирующих сред можно применять продвинутые явные методы;

- насколько следует увеличивать устойчивость явных методов интегрирования, чтобы «внедриться» в область применения «жестких» уравнений химической кинетики.

Настоящая работа ориентирована на решение этих задач применительно к неравновесным течениям в соплах ракетных двигателей. Она включает: описание математической модели таких течений и алгоритма расчета; технику определения числа шагов интегрирования по неявным и явным схемам; применение этой техники для расчета неравновесных процессов в соплах ЖРД и РДТТ.

Математическая модель и алгоритм расчета

Сопло Лаваля является агрегатом ДЛА, в котором тепловая энергия рабочего тела частично превращается в механическую энергию газовой струи. В этом агрегате параметры *P*, *T* (давление и температура) изменяются за короткое время $(10^{-4}...10^{-5} \text{ сек})$, и состав реагирующей среды не успевает «подстраиваться» к этим изменениям из-за конечных скоростей химических реакций. Поэтому появляются потери удельного импульса из-за химической неравновесности (ζ_n). Расчет этих потерь и состава рабочего тела по длине сопла будем выполнять по модели обратной задачи Пирумова с несколько измененной формой уравнений [11]:

- химической кинетики (в экспоненциальном виде):

$$\frac{d\gamma_i}{dx} = \frac{1}{V_g} \left(-e^{\gamma_i} \sum_j \nu_{ij} \Omega_j + \sum_q \sum_j \nu_{qj} \Omega_j \right) \equiv f_i^{\gamma}; \quad i, p, q = 1, \dots, 2m_c \quad (1)$$

где:
$$\Omega_j = k_j \left(\frac{P}{R_0 T}\right)^{\overline{m}_j} exp\left(-\sum_p n_{pj} \gamma_p\right); \quad \overline{m}_j = m_j + \sum n_{pj} - 1; \qquad \gamma_i = -\ln r_i;$$

$$\begin{aligned} &\nu_{ij} = \nu_{is}'' - \nu_{is}'; \quad n_{ij} = \nu_{is}'; \quad j = s; \quad s = 1...m_c; \\ &\nu_{ij} = \nu_{is}' - \nu_{is}''; \quad n_{ij} = \nu_{is}''; \quad j = s + m_c; \quad s = 1...m_c; \end{aligned}$$

 v_{is}' , v_{is}'' - стехиометрические коэффициенты реакций:

$$\sum_{i} \mathcal{N}'_{is} B_i \Leftrightarrow \sum_{i} \mathcal{N}''_{is} B_i; \quad s = 1, \dots, m_c,$$

где B_i – символ *i*-го вещества; k_j – константа скорости *j*-ой реакции; m_j –признак участия в *j*-ой реакции каталитической частицы M (если частица M участвует в *j*-ой реакции $m_j = 1$; иначе $m_j = 0$); n_c , m_c – число веществ и обратимых реакций в реагирующей системе; R_0 – универсальная газовая постоянная;

- движения и энергии:

$$\frac{dV_g}{dx} = \frac{R_0 T}{V_g \sum_i r_i \mu_i} \phi'(x); \qquad h_{oc} - \frac{V_g^2}{2} = \frac{\sum_i H_i r_i}{\sum_i r_i \mu_i}; \qquad (2)$$

где: V_g - скорость газа h_{oc} –массовая энтальпия на входе в сопло; H_i – мольная энтальпия *i*-го вещества (она является функцией температуры); r_i , μ_i – мольная доля и молекулярная масса *i* - го вещества.

- и замыкающее уравнение зависимости P = P(x) в виде: $\phi(x) = -\ln(P/P_{oc})$

При типовых параметрах на входе в сопло уравнения (1) являются очень «жесткими», и традиционно их решения применяются неявные схемы. Алгоритм расчета может базироваться, например: на методе Пирумова [7] или методе сплайн – интегрирования [12]. В этих методах дифференциальные уравнения на каждом шаге записываются в конечно-разностной форме. Например, по методу Пирумова уравнения химической кинетики (1) представляются в виде:

$$F_{i}^{n+1} \equiv \gamma_{i}^{n+1} - \gamma_{i}^{n} - h_{n} \left(\theta f_{i}^{\gamma} (\langle \gamma_{k}^{n} \rangle) + (1 - \theta) f_{i}^{\gamma} (\langle \gamma_{k}^{n+1} \rangle) \right) = 0,$$
(3)

где $\langle \gamma_k \rangle \equiv \gamma_1, \gamma_2, ..., \gamma_{n_c}$ и $\theta = 0, 4...0, 5$; h_n – шаг интегрирования.

На каждом шаге интегрирования полученная система решается методом Ньютона. Частные производные матрицы Якобиана вычисляются аналитически. Перед началом итераций проводится *LU*-декомпозиция этой матрицы [12], т.е. ее разложение на произведение верхней и нижней треугольных матриц. *LU*-матрица может использоваться на нескольких шагах интегрирования (схема с "замороженным" якобианом). Вычисление матрицы Якоби $\partial f_i^{\gamma} / \partial \gamma_k$ является частью алгоритма расчета. Ее элементы определяются по формулам:

$$\frac{\partial f_i^{\gamma}}{\partial \gamma_k} = \frac{1}{V_g} \left(e^{\gamma_i} \sum_j \nu_{ij} (\delta_i^k - n_{kj}) \Omega_j - \sum_p \sum_j \nu_{pj} n_{kj} \Omega_j \right), \tag{4}$$

Метод расчета потенциального числа шагов при интегрировании

по явным схемам

Для оценки возможности применения какой – либо явной схемы следует вычислить число шагов при интегрировании по этой схеме (K_1) в ходе расчета неравновесных процессов в сопле. Очевидно, что «прямой способ» решения этой задачи является неприемлемым, т. к. число этих шагов может быть чрезвычайно велико (до 10⁸ и более). Поэтому мы предложили другую технику расчета числа K_1 , с привлечением вышеописанного алгоритма, который использует матрицу Якоби. Эта матрица имеет некоторый набор собственных значений (λ_i). Наибольшее из них по модулю (λ_{max}) определяет размер шага интегрирования по явной схеме (h_{se}). Для этих схем при численном решении дифференциальных уравнений имеются ограничения по устойчивости [8]. Например, для методов Эйлера и Рунге-Кутта эти ограничения имеют вид:

$$h_{g_{\theta}}(E) \le 2/\lambda_{max}$$
; $h_{g_{\theta}}(PK) \le 2.8/\lambda_{max}$. (5)

Для «продвинутых» явных схем область устойчивости расширяется. Так в работе [10] предлагаются методы второго порядка с ограничениями:

$$h_{\scriptscriptstyle \mathcal{R}\mathcal{B}}(C) \le 0.814 s^2 / \lambda_{\scriptscriptstyle max} \tag{6}$$

где s – число приближений при выполнении шага. В частности, при s = 5 для размера устойчивого шага получим: $h_{g_{6}}(C) \leq 20,3/\lambda_{max}$. Как видно, этот шаг значительно больше, чем в методе Рунге-Кутта. Таким образом для расчета значений ($h_{g_{6}}$), а затем и числа (K_{1}) достаточно, параллельно с основным расчетом по неявной схеме, вычислять по крайней мере число λ_{max} .

Известно, что уравнения химической кинетики являются нелинейными, следовательно, собственные значения (λ_i) могут существенно меняться в ходе вычислений. Так как «перевычисление» матрицы Якоби проводится только на некоторых, предусмотренных алгоритмом шагах, то на этих же шагах выполняются вычисления значений λ_b , в результате чего будут формироваться их «траектории» по длине сопла. Поэтому нами был создан и встроен в программу расчета инструментальный блок вычисления λ_{max} и других собственных значений. Этот блок в дальнейшем будет применяться для решения задач неустойчивого горения и сокращения механизмов реакций, поэтому в нем определяется весь набор собственных значений.

Существует ряд методов расчета λ_i , но наиболее предпочтительным из них (по рекомендациям [13]) является применение процедуры Householder'а, и QRалгоритма. Также в связи с несимметричностью матрицы Якоби в алгоритм была включена процедура «балансировки» [13]. В отдельный файл по ходу расчета записываются ряд «важные» собственных значений, включая λ_{max} . Таким образом, при расчете по неявной схеме, можно спрогнозировать потенциальное число шагов по явной схеме (K_1). Соответствующие формулы легко получить, используя соотношения (5) или (6). Например, для метода Рунге-Кутта для некоторого элементарного отрезка Δx очевидно имеем: $\Delta K_1 = \frac{\Delta x}{h_{gg}(PK)} = \frac{\Delta x}{2,8} \lambda_{max}$, откуда

получаем:

$$K_1 = \frac{1}{2.8} \int_0^{x_f} \lambda_{max}(x) dx \tag{7}$$

где x_f – длина сопла. Если при выполнении некоторого расчета получим потенциальное число шагов интегрирования $K_I > 100000$, то испытуемую явную схему не рекомендуется применять для решения данной (или близкой по характеристикам) задачи.

Возможности явных схем при расчете неравновесных процессов в соплах ЖРД

Сравнение эффективности явных и неявных схем для сопел ЖРД было выполнено для продуктов сгорания топлив «Керосин + O_2 » (ЖРТ1) и « N_2O_4 + НДМГ» (ЖРТ2). Расчеты проводились при следующих параметрах : коэффициент избытка окислителя $\alpha_{o\kappa} = 1.0$, давления $P_{oc} = 20...100$ атм., минимальные радиусы сопел $r_m =$

0,006...0,06м и геометрическая степень расширения $f_a = 53$. При этом форма контура сопел не меняется, а его длина увеличивается пропорционально увеличению радиуса. Для топлива «Керосин + O₂» реагирующая среда включала 16 веществ и 47 реакций, заимствованных из работы [14], а для топлива «N₂O₄ + HДМГ»: 26 веществ и 82 реакции, заимствованных из той же работы. Предполагалось, что в сужающейся части сопла (до сечения $x_{rel} = x/r_m = 10.9$, когда скорость достигает значения ≈ 100 м/с) продукты сгорания еще находятся в химическом равновесии, а далее включается модель химически неравновесных течений.

Результаты расчетов для обоих топлив показаны в Табл. 1 и на рис. 1, 2. На рис. 1 приведены зависимости изменения значений K_2 и J_2 (число шагов интегрирования по неявной схеме и количество перевычислений якобиана) по относительной длине сопла. Как видно, общее число шагов интегрирования $K_2(f) \approx 330$, и из них 130 шагов приходится на дозвуковую часть. На начальном участке имеется «вертикальная» линия. Это вызвано заданием очень малого начального шага, (чтобы обеспечить надежность выполнения расчета) и до его заметного увеличения выполняется ≈ 50 шагов.

Таблица 1.

Сравнение явной и неявной схем расчета химически неравновесных течений в соплах ЖРД (*I*_{гор}, *I*_{ок} – энтальпии горючего и окислителя; М – число Маха)

Характеристики	Poc	T (K)	r (M)	٤ (%)	$K_{1}(M < 1)$	$K_{1}(M>1)$	K.	L
топлива	(атм)	$\Gamma_{0C}(\mathbf{IX})$		$S_{\rm H}(70)$	IX [(IVI <1)	K [(M >1)	132	J 2
Керосин + O ₂	100	3740	0,06	1,07	0,233 ⁺¹⁰	0,029 ⁺¹⁰	330	109
(ЖРТ1) 1 — 1048			0,006	2,31	$0,245^{+9}$	0,017 ⁺⁹	296	77
<i>I_{гор} = -19</i> 48 клж/кг	20	3496	0,06	2,82	0,533 ⁺⁹	0,028 ⁺⁹	335	61
<i>I_{ок}</i> = -398 кдж/кг			0,006	5,08	$0,500^{+8}$	0,058 ⁺⁸	290	48

N ₂ O ₄ + НДМГ	100	3461	0,06	1,06	$0,644^{+9}$	0,035 ⁺⁹	315	82
(ЖРТ2) 1 — 822.6			0,006	2,35	$0,625^{+8}$	$0,04^{+8}$	329	51
1 _{гор} — 825,0 клж/кг	20	3280	0,06	3,11	0,158 ⁺⁹	$0,009^{+9}$	285	51
I _{ок} = -212,5 кдж/кг			0,006	5,27	0,153 ⁺⁸	0,007 ⁺⁸	294	37

В столбцах «К₁» верхний индекс означает порядок числа, например: $0,233^{+10} = 0,233 \cdot 10^{+10}$

Рис.1. Изменение значений K_2 и J_2 по длине сопла (топлива ЖРТ1 и ЖРТ2); — ($P_{oc} = 100$ атм., $r_m = 0,06$ м); --- ($P_{oc} = 20$ атм., $r_m = 0,006$ м)

Наблюдается слабая и нерегулярная зависимость значения $K_2(f)$ от определяющих параметров: T_{oc} , P_{oc} , r_m , хотя потери удельного импульса (ξ_{μ}) заметно различаются (Табл. 1). Более чувствительным к варьированию этих параметров является величина J2. В исследуемой области она изменяется примерно в 2 раза при изменении λ_{max} в 100 раз.

На рис.2 показаны изменения температуры продуктов сгорания и значения К₁ (явная схема Рунге – Кутта 4-го порядка (5)) в зависимости от x_{rel}. Как видно, число шагов $K_l(f)$ чрезвычайно велико и чувствительно к определяющим параметрам: T_{oc} , P_{oc} , $r_{\rm m}$ Например, для ЖРТ1 ($T_{oc} = 3740$ К) максимальное значение $K_l(f) = 2,6.10^9$, а для ЖРТ2 ($T_{oc} = 3461$ К) значение $K_l(f) = 0,7 \cdot 10^9$. С уменьшением P_{oc} число шагов $K_l(f)$ падает за счет уменьшения λ_{max} , а при уменьшении r_m - за счет сокращения интервала интегрирования. При одновременном уменьшении Poc в 5 раз, и rm в 10 раз, в исследуемой области достигается минимум $K(f) = 16 \cdot 10^6$ шагов, что также является очень высоким значением. Следует отметить, что основной объем вычислений выполняется в дозвуковой части сопла (см. рис.2). Это означает, что характеристики течения близки к равновесным значениям. Поэтому, часто предполагается, что химическое равновесие сохраняется до минимального сечения и расчет неравновесных процессов можно начинать с этого сечения. Это допущение позволяет сократить (для данных условий) число K_1 примерно в 10 раз (Табл.1). Однако и в этом случае число потенциальных шагов интегрирования K_{l} (M> 1) остается очень значительным, и даже «продвинутые» явные схемы (6) будет трудно применить к решению данной задачи. Таким образом, при расчете химически неравновесных процессов в соплах ЖРД явные схемы пока не конкурируют с неявными методами.

Рис.2. Изменение температуры и значений K_I по длине сопла (топлива ЖРТ1 и ЖРТ2); — ($P_{oc} = 100$ атм., $r_m = 0.06$ м); --- ($P_{oc} = 20$ атм., $r_m = 0.006$ м)

Возможности явных схем при расчете неравновесных процессов в соплах РДТТ

Для сопел РДТТ эффективность явных и неявных схем оценивались для топлив:

- TT2 (С_{23.498}Н_{30.259}О_{34.190}N_{10.011} - нитроцеллюлозное топливо).

Для топлива TT1 реагирующая среда включала 33 вещества и 66 реакций, взятых из работ [14,15], а для топлива TT2 – 20 веществ и 48 реакций, взятых из тех же работ. Очевидно, что варианты расчета TT1 с являются значительно более «жесткими», чем варианты TT2. Расчеты проводились при параметрах: $P_{oc} = 20...70$ атм., $r_{\rm m} = 0,005...0,05$ м и $f_a = 33,9$. Модель химически неравновесных течений включается после сечения $x_{\rm rel} = 2,2$. Результаты расчетов показаны в Табл. 2 и на рис. 3,4.

Таблица 2.

Характеристики	Poc	T _{oc} (K)	r _m (м)	ξн%	K ₁ (M<1)	K ₁ (M>1)	K_2	T.
топлива	(атм)							J ₂
Топливо ТТ1 I _T = -1046 кдж/кг	70	3638	0,05	1,84	0,423+8	0,025 ⁺⁸	345	79
			0,005	2,19	$0,410^{+7}$	0,010 ⁺⁷	235	44
	20	3495	0,05	2,30	0,134 ⁺⁸	0,005 ⁺⁸	255	50
			0,005	3,27	0,131 ⁺⁷	0,003 ⁺⁷	230	41
Топливо ТТ2 I _T = -1964 кдж/кг	70	2361	0,05	2,82	0,145 ⁺⁷	0,003 ⁺⁷	499	39
			0,005	2,88	0,155+6	0,003+6	472	31
	20	2357	0,05	2,54	0,469+6	0,015+6	493	33
			0,005	2,51	0,456+5	0,017 ⁺⁵	417	28

Сравнение явной и неявной схем расчета химически неравновесных течений в соплах РДТТ (I_т – энтальпия топлива)

Для обоих вариантов расчета (Табл. 2) характерны заметные потери из-за химической неравновесности, т.е. состав продуктов сгорания на выходе из сопла значительно отклоняется от химического равновесия. В частности, в варианте TT2 состав «замораживается» уже в дозвуковой части, а химически равновесный расчет прогнозирует его дальнейшее значительное изменение.

На рис.3 приведены зависимости изменения значений K_2 и J_2 по относительной длине сопла. Как видно значения $K_2(f)$ невелики: для варианта TT1 имеем в среднем $K_2(f) \approx 250$, а для варианта TT2 - $K_2(f) \approx 400$. Таким образом, оказалось, что для расчета менее «жесткой» реагирующей системы требуется большее число шагов интегрирования. Эта особенность вызвана свойствами алгоритма, использующим схему с «замороженным» якобианом. Из Табл. 2 следует, что в варианте TT2 якобиан перевычисляется значительно реже, чем в варианте TT1, что для схемы с «замороженным» якобианом приводит к большему числу шагов. Следует отметить, что для варианта TT1 в зоне фазового перехода $Al_2O_3^*$ (из жидкого состояния в твердое) имеет место многократное деление шага интегрирования. Эта особенность отражается резким изломом на линиях K_2 и J_2 .

Рис. 3. Изменение значений K_2 и J_2 по длине сопла (топлива TT1 и TT2); — ($P_{oc} = 70$ атм., $r_m = 0,05$ м); --- ($P_{oc} = 20$ атм., $r_m = 0,005$ м)

На рис.4 показаны изменения температуры продуктов сгорания и значений K_I (явная схема) для обоих топлив в зависимости от x_{rel} . Как видно, число шагов $K_I(f)$ очень велико и чувствительно к определяющим параметрам: T_{oc} , P_{oc} , r_m . В варианте TT1 несмотря на более высокую температуру T_{oc} (по сравнению с вариантом ЖРТ2) число шагов K_I в 10 раз меньше. С уменьшением давления P_{oc} , и радиуса r_m показатель K_I сокращается примерно пропорционально произведению $P_{oc} \times r_m$. Основной объем вычислений выполняется в дозвуковой части сопла (см. рис.4). Если допустить сохранение химического равновесия до минимального сечения, то число шагов по явной схеме сократиться в 20...40 раз (Табл.2). Тогда даже для расчета химически неравновесных течений продуктов сгорания топлива TT1 вероятно можно применить продвинутые явные схемы (6). Для варианта TT2 реагирующая среда имеет жесткость в ≈ 50 раз меньшую, чем для варианта TT1 и продвинутые схемы можно применить по всей длине сопла.

Рис. 4 Изменение значений K_1 и температуры по длине сопла (топлива TT1 и TT2); - ($P_{oc} = 70$ атм., $r_m = 0,05$ м); --- ($P_{oc} = 20$ атм., $r_m = 0,005$ м)

Заключение

Прогресс в разработке устойчивых явных методов решения дифференциальных уравнений [8, 9, 10] приводит к интересной задаче применения этих методов для решения уравнений химической кинетики. В данной работе эта проблема решается в рамках обратной задачи расчета химически неравновесных процессов в соплах. Для этого в соответствующую программу встраивается алгоритм определения собственных значений матрицы Якоби, который включает: метод Householder'a, QR-алгоритме и процедуру «балансировки».

Численные исследования были проведены для сопел:

- ЖРД (топлива: Керосин + О₂; N₂O₄+ C₂H₈N₂);

- РДТТ (Металлизированное и Нитроцеллюлозное топлива).

Выполненные расчеты показали, что:

- для сопел типичных ЖРД явные схемы (в том числе продвинутые) неприемлемы, из-за чрезмерно большого числа шагов интегрирования;

- для сопел РДТТ использование явных схем (в связи с меньшей жесткостью кинетических уравнений) допустимо, при малых давлениях и размерах сопел, а также при невысоких температурах рабочего тела.

Работа выполнена при финансовой поддержке Российского Фонда Фундаментальных Исследований и правительства Республики Татарстан (Грант № НК №15-48-02454 /2016)

Библиографический список

1. Гидаспов В.Ю. Численное моделирование одномерного стационарного равновесного течения в детонационном двигателе // Труды МАИ, 2015, № 83: <u>http://www.mai.ru/science/trudy/published.php?ID=61826</u>

2. Гидаспов В.Ю. Численное моделирование стационарных волн горения и детонации в смеси частиц магния с воздухом // Труды МАИ, 2013, № 66: http://www.mai.ru/science/trudy/published.php?ID=40233 Картовицкий Л.Л., Левин В.М., Яковлев А.А. Концепция повышения эффективности рабочего процесса ПВРД // Авиационная техника. 2015. №4. С. 67-72.

4. Дрегалин А.Ф., Барышева О.Б., Черенков А.С. Методы расчета теплофизических свойств газовых смесей // Авиационная техника. 2007. №3. С. 46-49.

5. Boccaletto L., Dussauge J.P. High-Performance Rocket Nozzle Concept // Journal of Propulsion and Power, 2010, Vol. 26, No. 5, pp. 969-979.

6. Keshav S., Utkin Y.G., Nishihara M., Rich J. W., Adamovich I. V., Bao A. Studies of Chemi-Ionization and Chemiluminescence in Supersonic Flows of Combustion Products // Journal of Thermophysics and Heat Transfer, 2008, Vol. 22, No. 2, pp. 157-167.

7. Пирумов У.Г., Росляков Г.С. Газовая динамика сопел. – М.: Наука, 1990. - 368 с.

 Хайрер Э., Ваннер Г. Решение обыкновенных дифференциальных уравнений, жесткие и дифференциально-алгебраические задачи. - М.: Мир, 1999. - 685 с.

9 Скворцов Л.М. Явные двухшаговые методы Рунге-Кутты // Математическое моделирование. 2009. Т. 21. № 9. С. 54-65.

10 Лебедев В.И., Медовиков А.А. Явный метод второго порядка точности для решения жестких систем обыкновенных дифференциальных уравнений // Известия вузов. Математика. 1998. № 9. С. 55–63.

11. Naumov V. I., Krioukov V.G., Abdullin A.L., Demin A.V., Iskhakova R.L. «Chemical non-equilibrium model for simulation of combustion and flow in propulsion and power generation systems» *Proceedings of ASME-International Mechanical Engineering Congress and Exposition*, Florida, USA, Vol. 1, 11 pp., 2005.

12 Абдуллин А.Л., Дуригон А., Крюков В.Г. Применение метода сплайн-функции для решения задач химической кинетики // Вестник КГТУ им. А.Н. Туполева. 2004.Т. З. С. 31-34.

13. Press W. H., Flinnery B. P. and Vetterling W. T., et al. Numerical Recipes in C: The art of scientific equation models by polynomial approximation. - New Jersey: Prentice-Hall, 1988. - 735 p.

14. Glarborg P., Miller J.A., Kee R.J. Kinetic Modeling and Sensitivity Analysis of Nitrogen Oxide Formation in Well-Stirred Reactors // Combustion and Flame, 1986, Vol. 65, pp. 177-202.

 Кондратьев В.Н. Константы скорости газофазных реакций: справочник. - М.: Наука, 1974. - 512 с.