УДК 539.37

Идентификация нелинейного определяющего соотношения Работнова по данным испытаний полиэтилена и полипропилена на ползучесть

Стеценко Н.С.^{1*}, Хохлов А.В.^{2**}

¹Московский государственный университет имени М.В. Ломоносова, Ленинские Горы, 1, Москва, 119991, Россия ²НИИ Механики Московского государственного университета имени М.В. Ломоносова, Мичуринский проспект, 1, Москва, 119192, Россия *e-mail: <u>stetsenkonina@mail.ru</u> **e-mail: <u>andrey-khokhlov@ya.ru</u>

Аннотация

Разработана методика идентификации нелинейного определяющего соотношения Ю.Н. Работнова для реономных материалов, обобщающего линейное интегральное соотношение вязкоупругости с произвольной функцией ползучести путем введения второй материальной функции, по серии кривых ползучести материала при одноосном нагружении. Методика апробирована на данных испытаний полиэтилена и полипропилена. Указаны ее преимущества в сравнении с традиционной методикой, описанной Ю.Н. Работновым и его соавторами. Проведена верификация найденных материальных функций по кривым ползучести, не использованным при идентификации, по диаграммам нагружения с постоянной скоростью и по испытаниям полиэтилена при ступенчатом нагружении. Показано, что разработанная методика дает хорошее описание экспериментальных данных данных.

Ключевые слова: вязкоупругость, физическая нелинейность, ползучесть, идентификация, верификация, полиэтилен, полипропилен, полимеры

Введение

Методы надёжного моделирования термомеханического поведения и процессов разрушения материалов и конструкций, вопросы построения или выбора адекватных определяющих соотношений, анализа их свойств и области применимости, сфер влияния материальных функций (МФ) и феноменологических ограничений на них, разработки методик идентификации и аттестации, по-прежнему остаются актуальными в механике, материаловедении и практике инженерных расчётов, испытаний и диагностики элементов конструкций.

Нелинейное определяющее соотношение (ОС) Ю.Н. Работнова [1-10] описывает одномерные изотермические процессы деформирования вязкоупругопластичных материалов, связывая истории напряжения $\sigma(t)$ и деформации $\varepsilon(t)$ в данной точке тела. Оно обобщает линейное ОС вязкоупругости

$$\varepsilon(t) = \int_{0}^{t} \Pi(t-\tau) d\sigma(\tau), \qquad \sigma(t) = \int_{0}^{t} R(t-\tau) d\varepsilon(\tau), \qquad t \ge 0$$
(1)

посредством введения дополнительной материальной функции $\varphi(u)$:

$$\varphi(\varepsilon(t)) = \int_{0}^{t} \Pi(t-\tau) d\sigma(\tau), \qquad \sigma(t) = \int_{0}^{t} R(t-\tau) \varphi'(\varepsilon(\tau)) d\varepsilon(\tau), \quad t \ge 0.$$
(2)

Здесь $\Pi(t)$, R(t) – функции ползучести (ФП) и релаксации, $\varphi(u)$ – функции нелинейности. В англоязычных работах ОС (2) именуется уравнением квазилинейной вязкоупругости («QLV»), а его автором считается Я.Ч. Фанг (Y.C. Fung) [11-17]. В [1-10] ОС (2) прилагалось к описанию поведения стеклопластиков,

графита, металлов и сплавов и композитов, а в [11-17] – связок, сухожилий и других биологических тканей. Подробные обзоры литературы и областей приложения ОС (2) приведены в работах [18-22].

Линейное ОС вязкоупругости (1) получается из (2) при $\varphi(u) = Cu$, а функции ползучести и релаксации связаны интегральным уравнением, выражающим условие взаимной обратности операторов (1). Поэтому из трех МФ φ , П, *R* в ОС (2) лишь две независимы. На функции ползучести и релаксации в ОС (2) наложим те же минимальные ограничения, что и в линейной теории: П(*t*) и *R*(*t*) предполагаются положительными и дифференцируемыми на (0;∞), П(*t*) – возрастающей и выпуклой вверх [23-25], а *R*(*t*) – убывающей и выпуклой вниз на (0;∞), *R*(*t*) может иметь интегрируемую особенность или δ-сингулярность в т. *t* = 0 (слагаемое ηδ(*t*), η>0, $\delta(t)$ – дельта-функция). Из этих условий следует существование пределов *R*(+∞)=inf *R*(*t*)≥0, *R*(0)=sup *R*(*t*)>0 (*R*(0)=+∞, если *R*(*t*) не ограничена сверху) и П(0)=inf П(*t*)≥0 (*y*(0):= *y*(0+) – обозначение предела функции *y*(*t*) справа в т. *t*=0).

На функцию φ в ОС (2) наложим следующие минимальные требования [18-20]: функция $\varphi(u)$ непрерывно дифференцируема и строго возрастает на ($\omega_{.}$;0) \cup (0; ω_{+}) (где $\omega_{-}\omega_{+} < 0$), причем $\varphi(0+) = \varphi(0-) = 0$ (иначе входному процессу $\varepsilon(t) = 0$ соответствует ненулевой отклик $\sigma(t)$). Из возрастания $\varphi(u)$ следует существование обратной функции $\Phi := \varphi^{-1}$ на промежутке $D_{\Phi} = (\underline{x}; \overline{x})$, где $\overline{x} := \sup \varphi(u)$, $\underline{x} := \inf \varphi(u)$, и обратимость ОС (2). Величины \overline{x} и \underline{x} (и их конечность или бесконечность) – важные характеристики функций φ и Φ , существенно влияющие на поведение теоретических кривых ОС (2) [18-22]. Для материалов с одинаковым поведением при растяжении и сжатии функция $\varphi(u)$ нечетна, $\omega_{-} = -\omega_{+}$.

Если $\Pi(0+) \neq 0$ (модель регулярна), то $R(0+) < \infty$ и на пространстве непрерывных кусочно-гладких при $t \ge 0$ функций взаимно обратные операторы (2) представимы в виде (именно этот случай рассматривался в работах [1-10]):

$$\varphi(\varepsilon(t)) = \Pi(0)\sigma(t) + \int_{0}^{t} \dot{\Pi}(t-\tau)\sigma(\tau)d\tau, \ \sigma(t) = R(0)\varphi(\varepsilon(t)) + \int_{0}^{t} \dot{R}(t-\tau)\varphi(\varepsilon(\tau))d\tau$$
(3)

Данная статья продолжает цикл работ [18-22] по качественному анализу нелинейного OC (2) с произвольными материальными функциями R и φ с целью выявления комплекса моделируемых им реологических эффектов и границ области применимости, сфер влияния его материальных функций и феноменологических ограничений на них, способов идентификации, верификации и настройки. Цель настоящей работы – разработка методики идентификации материальных функций OC (2) по кривым ползучести материала при мгновенном нагружении на примерах конкретных экспериментальных данных и дальнейшая верификации найденных MФ. Апробация методики проводится по данным испытаний полиэтилена и пропилена, опубликованным в [26,27]. Полиэтилены высокой плотности широко применяются для изготовления труб линий водо- и газоснабжения и многих других изделий, поэтому исследование их механических характеристик и моделирование их поведения представляет большой интерес [28-39].

Кривые ползучести ОС (2) и возможные способы идентификации

Кривые ползучести (КП) при мгновенном нагружении $\sigma(t) = \bar{\sigma} h(t)$, порождаемые ОС (2), имеют вид:

$$\varepsilon(t,\overline{\sigma}) = \Phi(\overline{\sigma}\Pi(t))$$
 при x < $\overline{\sigma}\Pi(t) < \overline{x}$. (4)

Их общие свойства (при произвольных МФ) изучены в работе [18]. В частности, семейство КП (4) возрастает по $\bar{\sigma}$ (т.к. Ф возрастает), а при любом $\bar{\sigma} > 0$ КП возрастает по t (т.к. П(t) возрастает. КП (4) не обязаны быть выпуклыми вверх (как все КП, порожденные линейным ОС (1)), возможно наличие точек перегиба и моделирование КП со всеми тремя стадиями [18].

Из (4) следует, что изохронные КП имеют вид

$$\sigma(\varepsilon,t) = \varphi(\varepsilon(t,\overline{\sigma})) / \Pi(t)$$
(5)

Очевидно, они подобны: для любых фиксированных моментов времени t_1 и t_2 $\sigma(\varepsilon, t_1) / \sigma(\varepsilon, t_2) = \Pi(t_1) / \Pi(t_2)$. Это один из необходимых признаков применимости OC (2) (Ю.Н. Работнов выделял его: «Подобие изохронных кривых для металлов было отмечено как некий эмпирический факт; именно этот факт был положен в основу при формулировке закона нелинейной наследственности» [8, с.216]; в [1-10] подобие изохронных КП материала рассматривалось как *достаточное* условие применимости OC(2), а не только необходимое). Если $\Pi(0) \neq 0$, то при $t \rightarrow 0$ семейство изохронных КП сходится к кривой $\sigma(\varepsilon) = \phi(\varepsilon)/\Pi(0)$ (совпадающей с мгновенной диаграммой деформирования, к которой сходятся семейства диаграмм $\sigma(\varepsilon, a)$ и $\sigma(\varepsilon, b)$ при постоянных скоростях деформирования или нагружения *a* и *b* при стремлении *a* и *b* к бесконечности [22]), а если $\Pi(0)=0$ – сходится к вертикальной прямой $\varepsilon = 0$.

Разделение переменных в уравнении (5) позволяет, в принципе, определить обе материальные функции ОС (2) по нескольким КП материала для разных $\overline{\sigma}$ (если

в испытаниях наблюдается подобие изохрон (5)): при некотором фиксированном $t = t_*$ можно построить экспериментальную изохрону $\sigma(\varepsilon, t_*)$ и найти из (5) МФ

$$\varphi(\varepsilon) = \sigma(\varepsilon, t_*) \Pi(t_*) \tag{6}$$

(с точностью до множителя $\Pi(t_*)$), а затем, зная $\varphi(\varepsilon)$, можно найти функцию ползучести по одной экспериментальной КП из (4): $\Pi(t) = \varphi(\varepsilon(t, \overline{\sigma}))/\overline{\sigma}$. Можно определять МФ и в другом порядке. Сначала можно найти ФП по одной КП материала в области его линейного поведения (при достаточно малых деформациях, когда экспериментальная податливость $p(t) := \varepsilon(t; \overline{\sigma})/\overline{\sigma}$ не зависит от $\overline{\sigma}$) в предположении, что $\Phi(x) = x$ при $x < \overline{\sigma}_t$, т.е. положив $\Pi(t) = p(t)$. После этого МФ $\varphi(\varepsilon)$ можно определить по одной изохронной КП материала $\sigma(\varepsilon, t_*)$, используя формулу (6). Отметим, что пара МФ ($\Pi(t)$, $\varphi(\varepsilon)$), задающих ОС (2), определяется с точностью до произвольного множителя: пара ($c\Pi(t), c\varphi(\varepsilon)$) задает то же самое ОС (тот же оператор). Для однозначного определения МФ надо ввести некоторое условие нормировки одной из них.

Методика идентификации, предложенная Ю.Н. Работновым и его соавторами [2-10], состоит в том, что по семейству кривых ползучести материала сначала строятся изохронные кривые ползучести, проверяется их подобие (т.к. это является необходимым критерием применимости данного ОС (2), затем ФП определяется по КП в области, где изохронные кривые можно считать участком прямой, т.е. в области физически линейного поведения материала, где податливость не зависит от уровня напряжения). Далее проводится экстраполяция семейства изохронных кривых, после чего находится предельная изохрона, соответствующая нулевому

моменту времени, и по ней определяется функция нелинейности. Такая схема далеко не всегда применима при использовании «чужих» экспериментальных данных, поскольку они нередко бывают недостаточны для достоверного определения области линейности (как по величине и количеству уровней нагрузки, так и по продолжительность опытов), а начальные участки кривых ползучести, как правило, регистрируются с большой погрешностью, и потому определение нулевой изохроны по ним ненадежно. Процедура идентификации, описанная ниже, позволяет обойти эти трудности.

Помимо описанных процедур идентификации можно предложить и другие способы нахождения материальных функций ОС (2). В работе [18] показано, что МФ φ можно найти по известной зависимости скорости ползучести материала от напряжения: если экспериментальная зависимость имеет вид $\dot{\varepsilon}(\bar{\sigma}) = r(\bar{\sigma})$, то функция $\Phi = \varphi^{-1}$ находится из уравнения $x\Phi'(x) = r(x)$, $\Phi(0) = 0$. Например, для дробно-линейной зависимости Шестерикова $r(\sigma) = Ax/(\sigma_* - \sigma)$, $\sigma \in [0; \sigma_*)$ [40] получим $\Phi'(x) = A(\sigma_* - x)^{-1}$, $\Phi(x) = A\ln[\sigma_*/(\sigma_* - x)]$, $x \in [0; \sigma_*)$, $\bar{x} = \sigma_* < \infty$

$$\varphi(u) = \sigma_*(1 - e^{-u/A}), \ u \ge 0, \tag{7}$$

(σ_{*} – предел прочности). В работах [21, 22] намечены способы идентификации МΦ
 φ по семейству кривых релаксации или диаграмм нагружения материала.

Процедура идентификации ОС (2) по серии кривых ползучести материала при мгновенном нагружении

1) По данным испытаний (по КП $\varepsilon(t,\overline{\sigma})$ для разных уровней $\overline{\sigma}$) выбираются

моменты времени t_i , j = 1, ..., k, и строятся изохронные кривые ползучести $\sigma(\varepsilon, t_i)$, точнее несколько точек, лежащих на них, соответствующих набору уровней $\overline{\sigma}$ для которых зарегистрированы КП материала. Они аппроксимируются несколькими специальными (аналитически изученными в [18,20,41]) семействами функций, зависящими от набора параметров, и выбирается наиболее подходящее семейство – ΤО, для которого минимальное относительное квадратичное отклонение (минимизация по параметрам семейства) от экспериментальных точек меньше, чем у всех остальных семейств. Для приближения экспериментальных кривых удобнее использовать семейства функций, для которых возможно точное обращение ОС (2) (т.е. аналитическое построение обеих материальных функций R(t) и $\Phi(x)$ обратного ОС), что позволяет не прибегать к процедуре приближенного обращения и уменьшает погрешность идентификации.

2) Осуществляется проверка подобия изохронных кривых $\sigma(\varepsilon, t_i)$. В [1-17] и других работах, связанных с использованием ОС (2), подобие констатировалось лишь визуально по графикам изохрон, мера отклонения от подобия не вводилась и количественная оценка степени подобия изохрон не описана, хотя ЭТО необходимым. Прямая подобия представляется поточечная проверка экспериментальных изохронных KΠ $\sigma(\varepsilon, t)$ невозможна, для Т.К. изохрон, сечениями в порождаемых разные моменты времени, известны значения напряжения $\overline{\sigma}$ (фиксированные В рассматриваемой серии испытаний), соответствующие разным наборам зарегистрированных значений деформации (разным аргументам изохронных кривых). Поскольку области определения

изохронных КП для любых двух моментов времени разные, то и проверить подобие, исходя лишь из нескольких экспериментальных точек, нельзя. Поэтому уже на этом этапе необходимо сначала построить аппроксимации экспериментальных изохрон $\sigma(\varepsilon, t_i)$, чтобы проверить независимость отношений $\sigma(\varepsilon, t_i)/\sigma(\varepsilon, t_k)$ от ε и оценить величины отклонения этих функций от постоянных.

3) Выбирается «рабочая» изохрона $\sigma(\varepsilon, t_*)$. Выбор способ t. И масштабирования времени разумно связать с характерным временем для используемой серии испытаний (образца). В качестве характерного время можно выбрать, например, одну десятую длительности испытаний, если нет иных (физических) соображений.

4) По формуле (6) и «рабочей» изохроне находится функция нелинейности φ с точностью до постоянного множителя (зависящего от выбора изохроны).

5) С учетом характерных особенностей КП материала (и, возможно, других экспериментальных данных) и общих качественных свойств кривых ползучести, порождаемых ОС (2)) выбирается вид семейства аппроксимирующих функций для функции ползучести и находятся параметры аппроксимации (с использованием метода наименьших квадратов и найденной функции φ). Функция релаксации строится по функции ползучести в результате решения интегрального уравнения, связывающего их [38].

Данные испытаний полиэтилена и идентификация ОС (2) по ним

В последние полвека исследования в области разработки новых материалов привели к замене традиционных конструкционных материалов разнообразными

полимерами и композитами, в частности, полиэтиленами высокой плотности (HDPE). Высокие прочность и усталостные характеристики, низкий вес в сравнении с металлическими материалами, коррозионная устойчивость, гибкость и легкость изготовления, – все эти качества способствовали расширению сфер применения полиэтиленов в промышленности. В частности, они широко используются в изготовлении труб для транспортировки воды, газа и т.п., и поэтому моделирование их поведения представляет большой интерес [28-39].

Рассмотрим КП полиэтилена высокой плотности из статьи [26] (рис. 1,а). Образцы для экспериментов вырезались из стенок трубки так, что разрезы располагались вдоль радиуса трубки и вдоль ее продольной оси. Растягивающее усилие прилагалось вдоль продольной оси образца.

Рис.1. Экспериментальные КП полиэтилена для разных уровней напряжения (a) из [26] и изохронные КП (б) для моментов времени $t_i = 5;20;40;60;80$ (кривые 1-5).

Следуя описанному в предыдущем параграфе алгоритму идентификации, сначала построим экспериментальные изохронные КП для моментов времени $t_j = 5;20;40;60;80$ (рис.1,б). Введен безразмерный параметр времени $\bar{t} = t/10^3$ (в дальнейшем будем писать t вместо \overline{t}). Как было подчеркнуто, для проверки подобия изохронных КП необходимо предварительно построить аппроксимацию каждой из них. Для этой цели подходят, например, функции вида (7) [18, 20]:

$$f(x) = A(1 - e^{-x/b})$$
(8)

Выбрано именно это семейство (8), т.к. для пяти построенных изохрон (рис. 1) именно оно дало наименьшую величину квадратичного отклонения

$$\delta = \sum_{j=1}^{5} \delta_{j}, \qquad \delta_{j} = \sqrt{\sum_{i=1}^{K} (\sigma(\varepsilon_{i}) - f_{j}(\varepsilon_{i}))^{2} / \sigma(\varepsilon_{i})^{2}}, \quad j = 1...5, \quad K = 5,$$
(9)

в экспериментальных точках ε_i в сравнении с другими семействами аппроксимаций, рассмотренных в [18, 20]. Минимизация δ_i дает для аппроксимаций вида (8):

$$A_1 = 12.378, b_1 = 0.018, \delta_1 = 4.8\%$$
 для $t = 5$,
 $A_2 = 12.034, b_2 = 0.02, \delta_2 = 6.2\%$ для $t = 20$,
 $A_3 = 12.221, b_3 = 0.024, \delta_3 = 4.6\%$ для $t = 40$,
 $A_4 = 11.879, b_4 = 0.024, \delta_4 = 4.7\%$ для $t = 60$,
 $A_5 = 11.599, b_5 = 0.023, \delta_5 = 6.5\%$ для $t = 80$.

В контрольных точках $\bar{x} = 0.001k$, k = 1,...,10, для изохронные кривых $f_i(x)$, i = 1,...,5, выполняется условие подобия $f_i(\bar{x}) / f_j(\bar{x}) \approx \text{const}$ с относительной погрешностью не более 3%. Графики отношений $f_i(\bar{x}) / f_5(\bar{x})$, i = 1,...,4, т.е. отношений изохронных КП $\sigma(\varepsilon, t_i) / \sigma(\varepsilon, t_5)$, приведены на рис. 2.

Таким образом, подобие изохронных кривых ползучести имеет место, и можно описывать КП материала посредством ОС (2) и определять его МФ.

Рис. 2. Отношения аппроксимаций изохронных КП $\sigma(\epsilon, t_i) / \sigma(\epsilon, t_5)$, i = 1, ..., 4

Выберем «рабочую» изохрону, например, для момента времени $t_* = t_3 = 40$. Такой выбор t_* обусловлен тем, что мы можем считать это время некоторым характерным (представительным) для данного эксперимента: на всех КП 70% от максимальной деформации ползучести развивается к данному моменту. Таким образом, МФ φ определяется по изохронной КП $\sigma(\varepsilon, t_*) = \sigma(\varepsilon, t_3)$, т.е.

$$\varphi(x) = A_*(1 - e^{-x/b_*}), \quad A_* = A_3 = 12.22, \quad b_* = b_3 = 0.024$$
 (10)

Функция $\Phi(x)$, обратная к $\varphi(x)$, имеет вид

$$\Phi(x) = -b_*(\ln(1 - x / A_*)). \tag{11}$$

В силу (4) теперь можно определить функцию ползучести

$$\Pi(t) \approx \varphi(\varepsilon(t,\overline{\sigma})) / \overline{\sigma} \tag{12}$$

по одной из КП материала $\varepsilon(t,\overline{\sigma})$, разыскивая $\Pi(t)$, например, в виде

$$\Pi(t) = E_0 - E_1 e^{-\alpha_1 t} - E_2 e^{-\alpha_2 t} - E_3 e^{-\alpha_3 t}$$
(13)

Семь параметров ФП (13) находятся из условия минимума отклонения

$$\delta = \sqrt{\sum_{i=1}^{K} (\Pi(t_i) - \varphi(\varepsilon(t_i, \overline{\sigma}))\overline{\sigma}^{-1})^2 / (\varphi(\varepsilon(t_i, \overline{\sigma}))\overline{\sigma}^{-1})^2}$$
(14)

от экспериментальных данных. Выбрав КП для $\overline{\sigma} = 3.04$ и K = 10, получим $E_0 = 1.08, E_1 = 0.22, E_2 = 0.383, E_3 = 0.006, \alpha_1 = 0.349, \alpha_2 = 0.049, \alpha_3 = 200.$

Таким образом, МФ ОС (2) найдены. Отметим, что в силу выполнения условия подобия экспериментальных изохронных КП, функция ползучести получается одной и той же для любого выбора t_* (с допуском, определяемым погрешностью выполнения условия подобия).

Верификация по данным испытаний полиэтилена

Проверим, как найденные МФ описывают испытания по разным программам.

На рис.3 штриховыми линиями изображены КП полиэтилена из работы [26] для тех же уровней напряжения $\overline{\sigma}$ (3.04, 5.86... 11.57 МПа), что и на рис.1, но отнесенные к безразмерному времени. На рис.4 приведены экспериментальные КП полиэтилена для уровней $\overline{\sigma}$, не участвовавших в идентификации. Сплошные линии – КП, порожденные ОС (2) с найденными МФ (прогнозируемые). Кривые одного цвета соответствуют одинаковым $\overline{\sigma}$.

По результатам описания КП полиэтилена, приведенным на рис. 3 и 4, можно наметить область применимости найденных МФ, т.е. диапазон уровней напряжения $\overline{\sigma}$, при которых описание данных испытаний можно считать хорошим: $\overline{\sigma} \le 8.95$ МПа. Для этого диапазона максимальное относительное отклонение экспериментальных и теоретических кривых не превосходит 21%. Отметим, что большое отклонение для более высоких уровней напряжение закономерно вытекает

из свойств функций (10), которые используются для аппроксимации $\varphi(x)$. С ростом аргумента обратной функции (11) теоретическая КП (4) приближается к своей вертикальной асимптоте, и скорость возрастания КП увеличивается (см. анализ и иллюстрации КП в работах [18,20]).

Рис. 3. КП полиэтилена для указанных уровней напряжения $\overline{\sigma}$ (МПа), использованных при идентификации (штриховые линии) и моделирование этих данных ОС (2) с найденными МФ (сплошные).

Рис 4. Экспериментальные КП (штриховые линии) и прогнозируемые ОС (2) КП (сплошные) для уровней напряжения $\overline{\sigma}$ (МПа), не использованных при идентификации.

Рассмотрим испытание полиэтилена на ползучесть при ступенчатом нагружении из статьи [26]. На рис. 5 приведены экспериментальные КП для уровней напряжения $\bar{\sigma} = 2.93$, 4.39, 5.85, 7.32 МПа (штриховые линии) и КП, порожденная ОС с найденными МФ. Описание данных испытаний можно считать хорошим: относительное отклонение прогноза от экспериментальной КП не превышает 10 %.

Рис. 5. Экспериментальные и прогнозируемые КП для ступенчатого нагружения.

На рис. 6 приведены кривые нагружения полиэтилена с постоянной скоростью напряжения 0.1 МПа/с (рис.6,а) и 0.01 МПа/с (рис.6,б) из статьи [26] (штриховые линии) и кривые, порожденные ОС (2) с найденными МФ (сплошные).

Рис. 6.Экспериментальные (штриховые линии) и моделирующие (сплошная) кривые нагружения с постоянными скоростями 0.01 МПа/с (а) и 0.1 МПа/с (б)

Относительная погрешность отклонения экспериментальной и теоретической кривой не превосходит 10 % для скорости напряжения 0.01 МПа/с и 20 % для скорости напряжения 0.1 МПа/с.

Идентификация ОС (2) по кривым ползучести полипропилена

На рис.7 приведены данные испытаний полипропилена на ползучесть для различных уровней напряжения $\overline{\sigma} > 0$ из работы [27] (штриховые линии).

Рис 7. КП полипропилена при растяжении (штриховые линии) и КП, порожденные OC (2) (сплошные), для различных уровней напряжения $\overline{\sigma}$;

σ_в = 630 МПа – предел прочности материала при растяжении

Для них проведем процедуру идентификации ОС (2), выбрав МФ в виде

$$\varphi(x) = A_* \sin(x/b_*), \qquad \Pi(t) = E_0 - E_1 e^{-\alpha_1 t} - E_2 e^{-\alpha_2 t}. \tag{15}$$

Получим $A_* = 0.762$, $b_* = 14.23$, $E_0 = 20.58$, $E_1 = 6.699$, $E_2 = 3.751$, $\alpha_1 = 0.013$, $\alpha_2 = 0.346$. КП, порожденные ОС (2) с найденными МФ вида (15) приведены на рис.6 сплошными линиями. Для уровней $\overline{\sigma}$ из диапазона $0.16\sigma_s \div 0.65\sigma_s$ относительная погрешность отклонения прогнозируемых КП от экспериментальных не превосходит 6%. Отметим, что найденные МФ позволяют описать не только стадии ползучести с упрочнением и установившейся ползучести, но и начало стадии разупрочнения (см. КП для $\bar{\sigma} = 0.77 \sigma_s$ на рис.7).

Заключение

На основе анализа общих свойств кривых ползучести, порождаемых OC (2) c нелинейным двумя произвольными материальными функциями, разработана методика идентификации модели по серии кривых ползучести (образцов) материала для различных уровней напряжения (в одномерном случае). В частности, предложена процедура количественной оценки степени выполнения подобия условия экспериментальных изохронных кривых ползучести (необходимого условия применимости ОС (2)). Проведена апробация методики идентификации по данным испытаний полиэтилена и полипропилена, найдены материальные функции. Проведена их верификация по кривым ползучести не участвовавшим в идентификации, по диаграммам нагружения с постоянной скоростью и по испытаниям на ползучесть при ступенчатом нагружении; обнаружено адекватное описание данных испытаний полиэтилена и полипропилена.

В дальнейшем будут разработаны новые методики идентификации ОС (2) по кривым ползучести при ступенчатом нагружении, по диаграммам нагружения с разными скоростями, по семейству кривых релаксации при мгновенном нагружении и по семейству кривых релаксации с начальными стадиями деформирования [20-22] и будут сопоставлены результаты применения разных методик.

Работа выполнена при поддержке грантов РФФИ 17-08-01146 и 16-08-00669.

Библиографический список

- 1. Работнов Ю.Н. Равновесие упругой среды с последействием // Прикладная математика и механика. 1948. Т. 12. № 1. С. 53 62.
- Наместников В.С., Работнов Ю.Н. О наследственных теориях ползучести // Прикладная механика и техническая физика. 1961. Т. 2. № 4. С. 148 - 150.
- 3. Работнов Ю.Н. Ползучесть элементов конструкций. М.: Наука, 1966. 752 с.
- Работнов Ю.Н., Паперник Л.Х., Степанычев Е.И. Приложение нелинейной теории наследственности к описанию временных эффектов в полимерных материалах // Механика полимеров. 1971. № 1. С. 74 - 87.
- Работнов Ю.Н., Паперник Л.Х., Степанычев Е.И. О связи характеристик ползучести стекло-пластиков с кривой мгновенного деформирования // Механика полимеров. 1971. № 4. С. 624 - 628.
- Дергунов Н.Н., Паперник Л.Х., Работнов Ю.Н. Анализ поведения графита на основе нелинейной наследственной теории // Прикладная механика и техническая физика. 1971. № 2. С. 76 - 82.
- Работнов Ю.Н., Суворова Ю.В. О законе деформирования металлов при одноосном нагружении // Известия АН СССР. Механика твердого тела. 1972. № 4. С. 41 - 54.
- Работнов Ю.Н. Элементы наследственной механики твердых тел. М.: Наука, 1977.
 384 с.

- Суворова Ю.В. О нелинейно-наследственном уравнении Ю.Н. Работнова и его приложениях // Известия АН СССР. Механика твердого тела. 2004. № 1. С. 174 -181.
- Алексеева С.И., Фроня М.А., Викторова И.В. Анализ вязкоупругих свойств полимерных композитов с углеродными нанонаполнителями // Композиты и наноструктуры. 2011. № 2. С. 28 - 39.
- Fung Y.C. Stress-strain history relations of soft tissues in simple elongation. In: Biomechanics, Its Foundations and Objectives (ed. by Fung Y.C. et al.). New Jersey, Prentice-Hall, 1972, pp. 181 – 208.
- Fung Y.C. Biomechanics. Mechanical properties of living tissues, N.-Y, Springer-Verlag, 1993, 568 p.
- Funk J.R., Hall G.W., Crandall J.R., Pilkey W.D. Linear and quasi-linear viscoelastic characterization of ankle ligaments // Journal of Biomechanical Engineering, 2000, vol. 122, pp. 15 – 22.
- Nekouzadeh A., Pryse K.M., Elson E.L., Genin G.M. A simplified approach to quasilinear viscoelastic modeling // Journal of Biomechanics, 2007, vol. 40, no. 14, pp. 3070 -3078.
- De Frate L.E., Li G.The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model // Biomechanics and Modeling in Mechanobiology, 2007, vol. 6, no. 4, pp. 245 - 251.
- 16. Lakes R.S. Viscoelastic Materials, Cambridge, Cambridge University Press, 2009, 461 p.

- De Pascalis R., Abrahams I.D., Parnell W.J. On nonlinear viscoelastic deformations: a reappraisal of Fung's quasi-linear viscoelastic model // Proceedings of the Royal Society A. 2014, V.470, 20140058. doi: 10.1098/rspa.2014.0058.
- Хохлов А.В. Кривые ползучести и релаксации нелинейного определяющего соотношения Ю.Н. Работнова для вязкоупругопластичных материалов // Проблемы прочности и пластичности. 2016. Т. 78. № 4. С. 452 - 466.
- Хохлов А.В. Асимптотика кривых ползучести, порожденных нелинейной теорией наследственности Работнова при кусочно-постоянных нагружениях, и условия затухания памяти // Вестник Московского университета. Математика. Механика. 2017. № 5. С. 26 31.
- 20. Хохлов А.В. Анализ общих свойств кривых ползучести при ступенчатом нагружении, порождаемых нелинейным соотношением Работнова для вязкоупругопластичных материалов // Вестник МГТУ им. Н.Э. Баумана. Естественные науки. 2017. № 3. С. 93 - 123.
- Хохлов А.В. Анализ свойств кривых релаксации с начальной стадией гатрдеформирования, порождаемых нелинейной теорией наследственности Работнова // Механика композитных материалов. 2018. Т. 54. №4. С. 687-708. https://doi.org/10.1007/s11029-018-9757-1
- 22. *Хохлов А.В.* Свойства семейства диаграмм деформирования, порождаемых нелинейным соотношением Ю.Н. Работнова для вязкоупругопластичных материалов // Известия РАН. Механика твердого тела. 2018. №6.(в печати)
- 23. Хохлов А.В. Кривые длительной прочности, порождаемые линейной теорией вязкоупругости в сочетании с критериями разрушения, учитывающими историю

деформирования // Труды МАИ. 2016. № 91. URL: http://trudymai.ru/published.php?ID=75559

- 24. Хохлов А.В. Двусторонние оценки для функции релаксации линейной теории наследственности через кривые релаксации при гатр-деформировании и методики ее идентификации // Известия РАН. Механика твердого тела. 2018. № 3. С. 81 104.
- 25. Хохлов А.В. Анализ свойств кривых ползучести с произвольной начальной стадией нагружения, порождаемых линейной теорией наследственности // Вестник Самарского государственного технического университета. Физико-математические науки. 2018. Т. 22. № 1. С. 1 31, doi: 10.14498/vsgtu1543
- 26. Liu H., Polak M.A., Penlidis A. A practical approach to modeling time-dependent nonlinear creep behavior of polyethylene for structural applications // Polymer Engineering & Science, 2008, vol. 48, pp. 159 - 167.
- 27. Кучер Н.К., Земцов М.П., Данильчук Е.Л. Кратковременная ползучесть и прочность полипропиленовых волокнистых структур // Проблемы прочности. 2007. № 6. С. 77 90.
- Popelar C.F., Popelar C.H., Kenner V.H. Viscoelastic material characterization and modeling for polyethylene // Polymer Engineering & Science, 1990, vol. 30, pp. 577 -586.
- 29. Lai J., Bakker A. Analysis of non-linear creep of high-density polyethylene // Polymer, 1995, vol. 36 (1), pp. 93 99.
- 30. Zhang C., Moore I.D. Nonlinear mechanical response of high density polyethylene Part I experimental investigation and model evaluation // Polymer Engineering & Science, 1997, vol. 37, pp. 404 413.

- 31. Hillmansen S., Hobeika S., Haward R.N., Aleevers S. The effect of strain rate, temperature and molecular mass on the tensile deformation of polyethylene // Polymer Engineering & Science, 2000, vol. 40, pp. 481 – 489.
- 32. Bonner M., Duckett R.A., Ward M.I. The creep behavior of isotropic polyethylene // Journal of Material Science, 1999, vol. 34, pp. 1885 – 1897.
- 33. Dusunceli N., Colak O.U. The effects of manufacturing techniques on viscoelastic and viscoplastic behavior of high density polyethylene (HDPE) // Materials and Design, 2008, vol. 29, pp. 1117 – 1124.
- 34. Mizuno M., Sanomura Y. Phenomenological formulation of viscoplastic constitutive equation for polyethylene by taking into account strain recovery during unloading // Acta Mechanica, 2009, vol. 207, no. 1, pp. 83 - 93.
- 35. Алексеев В.А., Карабин А.Е. Новый тип тепловых аккумуляторов для охлаждения радиоэлектронной аппаратуры космических аппаратов // Труды МАИ. 2011. № 49. URL: <u>http://trudymai.ru/published.php?ID=28050</u>
- 36. Кулезнев В.Н., Иванов М.С. Ступенчатая ползучесть полиэтиленов трубных марок в температурном режиме предплавления // Высокомолекулярные соединения. 2016.
 Т. 58. № 4. С. 337 344.
- 37. Иванов М.С., Кулезнев В.Н. Метод механической спектроскопии полиэтилена трубных марок // Труды ВИАМ. 2016. Т. 47. № 11. С. 68 - 77. Doi: 10.18577/2307-6046-2016-0-11-9-9
- Kuhl A., Munoz-Rojas P., Munoz-Rojas A., Barbieri R., Benvenutti I.J. A procedure for modeling the nonlinear viscoelastoplastic creep of HDPE at small strains // Polymer engineering and science, 2017, vol. 57, pp. 144 - 152.

- 39. Bergstrom J.S. Mechanics of Solid Polymers. Theory and computational modeling, Elsevier, William Andrew, 2015, 520 p.
- 40. Шестериков С.А., Юмашева М.А. Конкретизация уравнения состояния при ползучести // Известия АН СССР. Механика твердого тела. 1984. № 1. С. 86 91.
- 41. Хохлов А.В. Свойства произведения функции ползучести и функции релаксации в линейной вязкоупругости // Проблемы прочности и пластичности. 2014. Т. 76. № 4. С. 343 356.