### УДК 519.6+520.2

# Методика оценки характеристик обнаружения оптико-электронной системы ГЕОДСС наземного базирования

Зиновьев Ю.С.<sup>1</sup>, Мишина О.А.<sup>2</sup>\*, Захаров А.Ю.<sup>2</sup>, Хатанзейская М.А.<sup>1</sup>

<sup>1</sup>Военно-космическая академия имени А.Ф. Можайского, ул. Ждановская, 13, Санкт-Петербург, 197198, Россия <sup>2</sup>Балтийский государственный технический университет «BOEHMEX» имени Д.Ф. Устинова, 1-ая Красноармейская, 1, Санкт-Петербург, 190005, Россия \*e-mail: olga\_a\_mishina@mail.ru

### Статья поступила 25.06.2019

### Аннотация

В статье рассматривается методический аппарат оценивания характеристик обнаружения фотометрического канала оптико-электронной системы наземного базирования ГЕОДСС. Оценка проводится по эталонным объектам, находящимся на геостационарной орбите. Учитывается неравномерность квантовой эффективности фотоприемного устройства (ФПУ) по рабочему спектральному диапазону. Рассмотрена возможность работы телескопа в полосах Джонсона. Приводятся основные выражения для расчета как интегрального отношения сигнал/шум, так и в полосах Джонсона.

Ключевые слова: оптико-электронная система наземного базирования, характеристики обнаружения, квантовая эффективность, полосы Джонсона, космические объекты, звездная величина.

1

### Введение

Системы контроля космического пространства (СККП) России и США созданы для контроля космических объектов и мониторинга засоренности околоземного космического пространства космическим мусором [1, 2, 3, 4, 5]. По обнаруженным объектам ведется динамический каталог, в котором содержатся сведения о назначении космических объектов (КО), их принадлежности, параметрах орбит, различных некоординатных характеристиках. Эта информация подлежит периодическому уточнению по результатам регулярных наблюдений КО и космического мусора [6, 7, 8, 9].

Важной составляющей СККП США является наземный электроннооптический комплекс зондирования глубокого космоса ГЕОДСС (GEODSS – Ground based Electro-Optical Deep Space Surveillance) [10, 11, 12].

Основные тактико-технические характеристики (TTX) этого комплекса были известны [13, 14]. Однако после того, как комплекс подвергся модернизации и получил современные ПЗС-приемники [15] информация о его новых возможностях практически отсутствует. В частности, представляет интерес его проницающая способность по малым объектам на геостационарных и высокоэллиптических орбитах, возможности по работе в полосах Джонсона, что открывает направление по спектральной классификации КО. В этой связи проведение моделирования данного комплекса с использованием новой информации о его TTX, известных из открытых источников [10, 16, 17], позволяет оценить его потенциальные характеристики по обнаружению как КО, так и космического мусора.

2

### DOI: 10.34759/trd-2019-109-16

В работе [10] рассмотрены некоторые характеристики оптико-электронной системы (ОЭС) телескопа видимого диапазона наземного базирования системы GEODSS. Однако в ней отсутствует методический подход, позволяющий оценить ряд базовых характеристик указанной системы (проницающая способность и т.п.).

В работах [18, 19, 20] рассмотрены методические основы оценки ряда базовых характеристик телескопов. Однако в этих работах не учитывается существенная неравномерность квантовой эффективности современных ФПУ, которые функционируют в видимом диапазоне, а также отсутствуют оценки проницающей способности этих телескопов при работе по объектам на геостационарной орбите, а также оценки возможностей использования полос Джонсона для решения задач спектральной селекции.

Рассмотрим методический аппарат, позволяющий решить указанные выше задачи.

#### Основные соотношения для расчета потока оптического излучения

Как известно, обнаружение объекта в поле зрения телескопа производится по пороговому принципу [18, 19, 21, 22]. В его основе лежит условие, согласно которому значение потока оптического излучения, полученного от объекта наблюдения Φ<sub>об</sub> должно в q<sub>тр</sub> раз превышать эквивалентный пороговый поток Φ<sub>Σ</sub>:

$$q = \frac{\Phi_{o\tilde{o}}}{\Phi_{\Sigma}} = \frac{\Phi_{o\tilde{o}}'(\Delta\lambda)}{\sigma_{\Sigma}} \ge q_{TP}$$
(1)

где q – отношение сигнал/шум;

 $q_{\rm Tp}$  – требуемое отношение сигнал/шум;  $\Phi_{\alpha \bar{\alpha}}^{\prime\prime}(\Delta \lambda)$  – полный поток от объекта (в электронах); σ<sub>Σ</sub> – значение среднеквадратичного отклонения (СКО) суммарного шума ФПУ
 (в электронах).

$$\Phi_{o\tilde{o}} = \frac{\tau * \tau_a * K_{ucn} * J_{o\tilde{o}} * A_{ex}}{D^2},$$
(2)

где *т* – коэффициент пропускания оптической системы телескопа;

 $\tau_a$  – коэффициент затухания в атмосфере;

Кисп – коэффициент использования энергии светового пятна;

 $J_{ob}$  – сила излучения объекта в в диапазоне чувствительности  $\Phi \Pi Y$ ;

А<sub>вх</sub> – площадь входной апертуры телескопа;

d<sub>0</sub> – диаметр вторичного зеркала ОЭС.

$$K_{ucn} = \begin{cases} \frac{(\Delta x)^2}{\pi \cdot r_{j\phi}^2}, & npu \ 2r_{j\phi} > \Delta x\\ 1 & , & npu \ 2r_{j\phi} \le \Delta x \end{cases}$$
(3)

где r<sub>эф</sub> – эффективный радиус кружка рассеяния;

 $\Delta x$  – линейный размер элемента разложения ФПУ.

$$r_{\mathcal{H}} = \frac{0.61 * \lambda_{cp} * f}{d} \tag{4}$$

где λ – граничная длина волны диапазона чувствительности ФПУ;

f – фокусное расстояние телескопа.

Для оценки энергетических параметров телескопа рассмотрим два типа эталонных объектов с заданными характеристиками: зеркальную и диффузную сферы. Проведем оценку величины J<sub>об</sub> для этих объектов.

А. Отражение от зеркальной сферы

Сила излучения объекта в направлении ОЭС в диапазоне чувствительности ФПУ

$$J_{ob} = J_{3ep} = \frac{\rho_3 * R_3^2 * E_0(\Delta \lambda)}{4}$$
(5)

где  $\rho_3$  – коэффициент отражения от зеркальной сферы ( $\rho_3 = 0.8$ );

R<sub>3</sub> – радиус зеркальной сферы;

 $E_0(\Delta\lambda)$  – величина солнечной постоянной для диапазона  $\Delta\lambda$ .

Значения величины солнечной постоянной E<sub>0</sub>(Δλ) для различных диапазонов длин волны (для 4-х полос Джонсона) представлены в таблице 1.

Таблица 1 – Значения величины солнечной постоянной E<sub>0</sub>(Δλ) для различных диапазонов длин волны

| Спектральные области Джонсона           | Значение солнечной постоянной $E_0(\Delta\lambda), BT/m^2$ |
|-----------------------------------------|------------------------------------------------------------|
| $\Delta\lambda_1=0,4\ldots0,5$ мкм      | 187,6                                                      |
| $\Delta\lambda_2 = 0,5 \dots 0,6$ мкм   | 183,4                                                      |
| $\Delta\lambda_3 = 0, 60, 8$ мкм        | 287,0                                                      |
| $\Delta\lambda_4 = 0, 8 \dots 1, 0$ мкм | 183,4                                                      |
| $\Delta \lambda = 0, 4 \dots 1, 0$ мкм  | 840                                                        |

Б. Отражение от диффузной сферы (при фазовом угле  $\phi = 0$ )

Сила излучения

$$J_{o\delta} = 0.66 * R_{\partial} * \rho_{\partial} * E_0(\Delta \lambda) \tag{6}$$

где R<sub>д</sub> – радиус диффузной сферы;

 $\rho_{\rm d}$  – коэффициент отражения от диффузной сферы ( $\rho_{\rm d}$  = 0,1).

Полный поток от объекта в квантах определяется из соотношения

$$\Phi_{o\vec{o}}' = \Phi_{o\vec{o}} * \frac{\lambda_{cp}}{h^* c} \quad [\phi \text{отон/cek}]$$
(7)

где  $\lambda_{cp}$  – средняя длина волны для поддиапазонов  $\Delta\lambda_1$ ,  $\Delta\lambda_2$ ,  $\Delta\lambda_3$ ,  $\Delta\lambda_4$ ;

с – скорость света в вакууме (с =  $3*10^8$  м/сек).

Полный поток от объекта в электронах

$$\Phi_{o\delta}^{''}(\Delta\lambda_{1}..\Delta\lambda_{4}) = \Phi_{o\delta}^{'}(\Delta\lambda_{1})^{*} \eta(\lambda_{cp1})^{*} T_{H} + \Phi_{o\delta}^{'}(\Delta\lambda_{2})^{*} \eta(\lambda_{cp2})^{*} T_{H} + \Phi_{o\delta}^{'}(\Delta\lambda_{3})^{*} \eta(\lambda_{cp3})^{*} T_{H} + \Phi_{o\delta}^{'}(\Delta\lambda_{4})^{*} \eta(\lambda_{cp4})^{*} T_{H}$$

$$(8)$$

где T<sub>н</sub> – время накопления.

Значения величин  $\eta(\lambda_{cp1})$ ,  $\eta(\lambda_{cp2})$ ,  $\eta(\lambda_{cp3})$ ,  $\eta(\lambda_{cp4})$  берутся из таблицы 2.

Таблица 2 – Значения квантовой эффективности для 4-х поддиапазонов спектральной чувствительности матрицы CCID-16

| Полоса            | Диапазон полосы | Средняя длина волны | η                     |
|-------------------|-----------------|---------------------|-----------------------|
| $\Delta\lambda$   | (нм)            | $\lambda_{cp}$      | (для $\lambda_{cp}$ ) |
| $\Delta\lambda_1$ | 400 - 500       | 450                 | 0,8                   |
| $\Delta\lambda_2$ | 500 - 600       | 550                 | 0,88                  |
| Δλ <sub>3</sub>   | 600 - 800       | 700                 | 0,8                   |
| $\Delta\lambda_4$ | 800 - 1000      | 900                 | 0,3                   |

### Результаты расчетов потока оптического излучения

При проведении расчетов будем варьировать радиус наблюдаемого объекта: R<sub>3</sub> = 0,55 м; 0,18 м; 0,11 м; 0,028 м. Значения радиусов R<sub>3</sub> выбраны из соображений сопоставимости получаемых результатов с результатами работы [10].

Оценку целесообразно провести для значений коэффициентов пропускания атмосферы *τ<sub>a</sub>*, характерных для двух значений зенитного угла θ (0 и 70 градусов). Указанные значения приведены в таблице 3.

Таблица 3 – Значения коэффициентов пропускания атмосферы для поста №1

| Спектральные | Зенитные углы, град |      |
|--------------|---------------------|------|
| области, мкм | 0°                  | 70°  |
| 0,40,5       | 0,73                | 0,54 |

| 0,50,6 | 0,81 | 0,66 |
|--------|------|------|
| 0,60,8 | 0,79 | 0,66 |
| 0,81,0 | 0,67 | 0,53 |
| 0,41,0 | 0,74 | 0,6  |
|        |      |      |

\*) Пост №1 расположен в Сокорро, штат Нью-Мексика

Все дальнейшие оценки будем проводить с использованием таблицы 4, имея в

виду, что в телескопе ГЕОДСС применяется приемная матрица ССІД-16 [16].

| Условные<br>обозначения | Наименование параметра                                                                  | Значения              |
|-------------------------|-----------------------------------------------------------------------------------------|-----------------------|
| Δλ                      | рабочий диапазон, нм                                                                    | 400 - 1000            |
| q <sub>Tp</sub>         | требуемое отношение сигнал / шум                                                        | 4-5                   |
| q                       | отношение сигнал/шум                                                                    | без обработки сигнала |
| A <sub>bx</sub>         | площадь входного зрачка, м <sup>2</sup>                                                 | 0,713                 |
| d                       | диаметр объектива ОЭС, м                                                                | 1,02                  |
| $d_0$                   | диаметр вторичного зеркала ОЭС, м                                                       | 0,362                 |
| τ                       | коэффициент пропускания оптической системы                                              | 0,5                   |
| $\tau_a = f(\theta)$    | коэффициент пропускания атмосферы                                                       | см. таблицу 3         |
| θ                       | зенитный угол                                                                           | 0, 70 градусов        |
| D                       | расстояние до объекта, км                                                               | 36 000                |
| λ                       | граничная длина волны диапазона чувствительности<br>ФПУ ОЭС, нм                         | 1000                  |
| f                       | фокусное расстояние оптической системы, м                                               | 2,18                  |
| Δx                      | размер элемента разложения (пикселя) ФПУ, мкм                                           | 24x24                 |
| h                       | постоянная Планка, Дж*сек                                                               | 6,6*10 <sup>-34</sup> |
| η                       | квантовая эффективность ФПУ                                                             | см. таблицу 2         |
| $\sigma_{c}$            | СКО шума считывания                                                                     | 12 e                  |
| $\sigma_{yc}$           | СКО шума видеоусилителя                                                                 | 7 e                   |
| $B_{\varphi}$           | спектральная плотность энергетической яркости фона космоса, Вт/(м <sup>2</sup> *ср*мкм) | 27*10 <sup>-7</sup>   |
| N <sub>max</sub>        | глубина ячейки ФПУ                                                                      | 140 000 e             |
| n                       | разрядность АЦП                                                                         | 12                    |

# Таблица 4 – Исходные данные для моделирования

График силы излучения зеркального объекта  $J_{o6}$  (уравнение 5) в направлении ОЭС в диапазоне чувствительности ФПУ для всего рабочего диапазона  $\Delta \lambda = 400 - 1000$  нм представлен на рисунке 1.

Значения силы излучения объекта J<sub>об</sub> в направлении ОЭС в диапазоне чувствительности ФПУ в полосах Джонсона даны в таблице 5.



Рисунок 1 – Зависимость силы излучения объекта  $J_{o \delta}$  в направлении ОЭС от радиуса в диапазоне чувствительности ФПУ для всего рабочего диапазона  $\Delta \lambda$ 

Таблица 5 – Сила излучения зеркального объекта  $J_{\text{об}}$  в направлении ОЭС в

диапазоне чувствительности ФПУ в полосах Джонсона

| Радиус зеркальной<br>сферы R3, м | 0,55                                                  | 0,18   | 0,11   | 0,028  |  |
|----------------------------------|-------------------------------------------------------|--------|--------|--------|--|
|                                  | Спектральная область $\Delta \lambda = 400 - 1000$ нм |        |        |        |  |
|                                  | 50.8200                                               | 5.4432 | 2.0328 | 0.1317 |  |
| Сила излучения                   | Спектральная область $\Delta \lambda = 400 - 500$ нм  |        |        |        |  |
|                                  | 11.3498                                               | 1.2156 | 0.4540 | 0.0294 |  |
|                                  | Спектральная область $\Delta \lambda = 500 - 600$ нм  |        |        |        |  |
| объекта Јоб, Вт/ср               | 11.0957                                               | 1.1884 | 0.4438 | 0.0288 |  |
|                                  | Спектральная область $\Delta \lambda = 600 - 800$ нм  |        |        |        |  |
|                                  | 17.3635                                               | 1.8598 | 0.6945 | 0.0450 |  |
|                                  | Спектральная область $\Delta \lambda = 800 - 1000$ нм |        |        |        |  |

| 11.0957  | 1.1884        | 0.4438       | 0.0288   |
|----------|---------------|--------------|----------|
| Проверка | а результатов | по полосам Д | [жонсона |
| 50.9047  | 5.4523        | 2.0362       | 0.1319   |

Значения полного потока при зенитных углах наблюдения 0 и 70 градусов сведены в таблицу 6.

Величина потока оптического излучения от объекта наблюдения в зависимости от радиуса зеркальной сферы представлена на рисунке 2.

Таблица 6 – Поток оптического излучения от зеркального объекта во всем

# рабочем диапазоне

|                       | Радиус зеркальной сферы R3, м                         |               |                                |         |
|-----------------------|-------------------------------------------------------|---------------|--------------------------------|---------|
| Оцениваемый параметр  | 0,55                                                  | 0,18          | 0,11                           | 0,028   |
| Сила излучения        | 50 8200                                               | 5 4422        | 2 0228                         | 0.1217  |
| объекта Јоб, Вт/ср    | 30.8200                                               | 5.4452        | 2.0328                         | 0.1317  |
| Зенитный угол 0 град  | Спектр                                                | альная област | ть $\Delta\lambda = 400 - 100$ | 1000 нм |
| Поток Фоб             | 0 1026                                                | 0.0111        | 0.0041                         | 0.0002  |
| 1.0e-013 *            | 0.1056                                                | 0.0111        | 0.0041                         | 0.0005  |
| Поток Фоб             |                                                       |               |                                |         |
| 1.0e+004 *            | 3.6616                                                | 0.3922        | 0.1465                         | 0.0095  |
| в квантах             |                                                       |               |                                |         |
| Зенитный угол 70 град | Спектральная область $\Delta \lambda = 400 - 1000$ нм |               |                                |         |
| Поток Фоб             | 0.8208                                                | 0.0800        | 0.0226                         | 0.0022  |
| 1.0e-014 *            | 0.8398                                                | 0.0899        | 0.0550                         | 0.0022  |
| Поток Фоб             |                                                       |               |                                |         |
| 1.0e+004 *            | 2.9688                                                | 0.3180        | 0.1188                         | 0.0077  |
| в квантах             |                                                       |               |                                |         |



Рисунок 2 – Зависимость потока оптического излучения от объекта от радиуса зеркальной сферы (в квантах) при θ = 0 и 70 градусов

Теперь рассчитаем значения потока оптического излучения от объекта наблюдения в полосах Джонсона.

Для зенитного угла наблюдения 70 градусов результаты представлены в таблице 7 и на рисунке 3.

Таблица 7 – Значения величины потока оптического излучения от объекта наблюдения в полосах Джонсона при  $\theta$  = 70 градусов

|                                                     | Радиус зеркальной сферы R3, м                         |        |        |        |
|-----------------------------------------------------|-------------------------------------------------------|--------|--------|--------|
| Оцениваемый параметр                                | 0,55                                                  | 0,18   | 0,11   | 0,028  |
| Спектральн                                          | Спектральная область $\Delta \lambda = 400 - 1000$ нм |        |        |        |
| Сила излучения объекта<br>Ј <sub>об</sub> , Вт/ср   | 50.8200                                               | 5.4432 | 2.0328 | 0.1317 |
| Поток Ф <sub>об</sub> 1.0е-014 *                    | 0.8398                                                | 0.0899 | 0.0336 | 0.0022 |
| Поток Ф <sub>об</sub> 1.0е+004 *<br>(в квантах)     | 2.9688                                                | 0.3180 | 0.1188 | 0.0077 |
| Спектральная область $\Delta\lambda = 400 - 500$ нм |                                                       |        |        |        |
| Сила излучения объекта<br>Јоб, Вт/ср                | 11.3498                                               | 1.2156 | 0.4540 | 0.0294 |
| Поток Фоб1 1.0е-014 *                               | 0.1688                                                | 0.0181 | 0.0068 | 0.0004 |
| Поток Фоб1 1.0е+003 *<br>(в квантах)                | 3.8362                                                | 0.4109 | 0.1534 | 0.0099 |

| Спектральная область $\Delta\lambda = 500 - 600$ нм |                            |                       |        |        |
|-----------------------------------------------------|----------------------------|-----------------------|--------|--------|
| Сила излучения объекта<br>Јоб, Вт/ср                | 11.0957                    | 1.1884                | 0.4438 | 0.0288 |
| Поток Фоб2 1.0е-014 *                               | 0.2017                     | 0.0216                | 0.0081 | 0.0005 |
| Поток Фоб2 1.0е+003 *<br>(в квантах)                | 5.6023                     | 0.6000                | 0.2241 | 0.0145 |
| Спектралы                                           | ная область $\Delta$       | $\lambda = 600 - 800$ | HM     |        |
| Сила излучения объекта<br>Јоб, Вт/ср                | 17.3635                    | 1.8598                | 0.6945 | 0.0450 |
| Поток Фоб3 1.0е-014 *                               | 0.3156                     | 0.0338                | 0.0126 | 0.0008 |
| Поток Фоб3 1.0е+004 *<br>(в квантах)                | 1.1158                     | 0.1195                | 0.0446 | 0.0029 |
| Спектральн                                          | ая область $\Delta\lambda$ | L = 800 - 1000        | HM     |        |
| Сила излучения объекта<br>Јоб, Вт/ср                | 11.0957                    | 1.1884                | 0.4438 | 0.0288 |
| Поток Фоб4 1.0е-014 *                               | 0.1620                     | 0.0173                | 0.0065 | 0.0004 |
| Поток Фоб4 1.0е+003 *<br>(в квантах)                | 7.3617                     | 0.7885                | 0.2945 | 0.0191 |
|                                                     |                            |                       |        |        |
| Поток Ф <sub>об1234</sub> 1.0е+004 *<br>(в квантах) | 2.7958                     | 0.2995                | 0.1118 | 0.0072 |



Рисунок 3 – Зависимость величины потока оптического излучения от объекта от радиуса зеркальной сферы (в квантах) при θ = 70 градусов в полосах Джонсона

Значения величины полного потока в электронах сведены в таблицу 8. Зависимость величины потока оптического излучения объекта наблюдения в

электронах от радиуса зеркальной сферы для зенитных углов 0 и 70 градусов представлена на рисунке 4.



Рисунок 4 – Зависимость величины потока оптического излучения объекта наблюдения в электронах от радиуса зеркальной сферы для зенитных углов 0 и 70 градусов

Таблица 8 – Значения величины полного потока в электронах

|                                         | Спектральная область $\Delta \lambda = 400 - 1000$ нм |               |        |        |
|-----------------------------------------|-------------------------------------------------------|---------------|--------|--------|
| Радиус зеркальной<br>сферы R3, м        | 0,55                                                  | 0,18          | 0,11   | 0,028  |
|                                         | Зенитный у                                            | гол 0 градусо | В      |        |
| Поток Фоб<br>1.0e+003 *<br>в электронах | 8.7600                                                | 0.9383        | 0.3504 | 0.0227 |
| Зенитный угол 70 градусов               |                                                       |               |        |        |
| Поток Фоб<br>1.0e+003 *<br>в электронах | 7.0795                                                | 0.7583        | 0.2832 | 0.0183 |

# Основные соотношения для расчета СКО суммарного шума и результаты

#### оценки

Значение СКО суммарного шума может быть найдено по формуле:

$$\sigma_{\Sigma} = \sqrt{\sigma_{\phi}^2 + \sigma_T^2 + \sigma_c^2 + \sigma_{yc}^2 + \sigma_{ALIII}^2} \tag{9}$$

Рассмотрим перечисленные шумовые составляющие.

### 1) Шум распределенного фона космоса

В первом спектральном интервале  $\Delta \lambda_1$ :

$$\sigma_{\phi 1}^{2} = \frac{\eta(\lambda_{cp1}) * \lambda_{cp1}}{h * c} * \left[ \frac{\tau * B_{\phi} * A_{ex} * (\Delta x)^{2} * T_{\mu} * \Delta \lambda_{1}}{f^{2}} \right]$$
(10)

где T<sub>н</sub> – время накопления.

Результаты расчетов  $\sigma_{\phi 1}^2$ ,  $\sigma_{\phi 2}^2$ ,  $\sigma_{\phi 3}^2$ ,  $\sigma_{\phi 4}^2$  показали, что порядок их величин 10<sup>-5</sup>, и при оценке уровня шума ими можно пренебречь.

2) Шум темнового тока

$$\sigma_T = 6\bar{e} * T_H [электрон] \tag{11}$$

3) Шум считывания

В соответствии с ТТХ ФПУ ССІД-16 [16] шум считывания составляет

 $\sigma_c = 12$  [электрон]

4) Шум типового видеоусилителя (СКО, приведенная к его входу)

 $\sigma_{vc} = 7$  [электрон]

5) Шум дискретизации по уровню АЦП

$$\sigma_{A \amalg \Pi} = \frac{N_{\text{max}}}{2^n * \sqrt{12}} [ \text{электрон} ]$$
(12)

Отношение сигнал/шум (в электронах):

$$q = \frac{\Phi_{o\delta}''(\Delta\lambda)}{\sigma_{\Sigma}} \quad [электрон]$$
(13)

В результате суммарное СКО составляет величину порядка 17 ē. Результаты расчетов СКО суммарного шума представлены в таблице 9.

| Таблица 9 – Результаты расчетов СН | КО суммарного шума |
|------------------------------------|--------------------|
|------------------------------------|--------------------|

| Обозначение       | Характеристика                       | Значение |
|-------------------|--------------------------------------|----------|
| $\sigma_{\rm T}$  | СКО темнового тока                   | 2.22 ē   |
| $\sigma_{c}$      | СКО шума считывания                  | 12 ē     |
| $\sigma_{yc}$     | СКО шума видеоусилителя              | 7 ē      |
| $\sigma_{AIII}$   | СКО шума дискретизации по уровню АЦП | 9.86 ē   |
| $\sigma_{\Sigma}$ | Суммарное СКО                        | 17.18 ē  |

Значения отношения сигнал/шум от размера зеркальной сферы при изменении времени накопления приведены в таблице 10.

Поведение параметров обнаружения в полосе Джонсона с наихудшей квантовой эффективностью η = 0,3 для поддиапазона Δλ = 800 – 1000 нм представлено в таблице 11.

Таблица 10 – Значения отношения сигнал/шум при изменении времени накопления, зенитный угол θ = 0 градусов

| Зенитный угол 0 гр                                   | Спектральная область Δλ = 400 – 1000 нм |         |         |        |
|------------------------------------------------------|-----------------------------------------|---------|---------|--------|
| Радиус зеркальной сферы R3, м                        | 0,55                                    | 0,18    | 0,11    | 0,028  |
| Отношение сигнал/шум, q<br>(T <sub>н</sub> = 0,37 с) | 509.7817                                | 54.6014 | 20.3913 | 1.3212 |
| Отношение сигнал/шум, q<br>(T <sub>н</sub> = 1 с)    | 1310.6                                  | 140.4   | 52.4    | 3.4    |
| Отношение сигнал/шум, q<br>(T <sub>н</sub> = 1,5 с)  | 1842.9                                  | 197.4   | 73.7    | 4.8    |
| Отношение сигнал/шум, q $(T_{\rm H} = 2 \text{ c})$  | 2272.0                                  | 243.3   | 90.9    | 5.9    |
| Отношение сигнал/шум, q<br>(T <sub>н</sub> = 20 c)   | 3906.7                                  | 418.4   | 156.3   | 10.1   |

Таблица 11 — Значения отношения сигнал/шум при изменении времени накопления для поддиапазона  $\Delta \lambda = 800 - 1000$  нм, зенитный угол  $\theta = 0$  градусов

| Зенитный угол 0 гр                                    | Спектральная область Δλ = 800 – 1000 нм |         |         |        |
|-------------------------------------------------------|-----------------------------------------|---------|---------|--------|
| Радиус зеркальной сферы R3, м                         | 0,55                                    | 0,18    | 0,11    | 0,028  |
| Отношение сигнал/шум, q<br>(T <sub>н</sub> = 0,37 с)  | 60.1145                                 | 6.4387  | 2.4046  | 0.1558 |
| Отношение сигнал/шум, q<br>(T <sub>н</sub> = 1 c)     | 154.5440                                | 16.5528 | 6.1818  | 0.4005 |
| Отношение сигнал/шум, q $(T_{\rm H} = 1,5 \text{ c})$ | 217.317                                 | 23.2763 | 8.6927  | 0.5632 |
| Отношение сигнал/шум, q $(T_{\rm H} = 2 \text{ c})$   | 267.9197                                | 28.6962 | 10.7168 | 0.6944 |
| Отношение сигнал/шум, q<br>(T <sub>н</sub> = 20 с)    | 460.6919                                | 49.3435 | 18.4277 | 1.1940 |

### Результаты расчетов для диффузной сферы

Результаты моделирования для диффузной сферы представлены в таблицах 12, 13, 14, 15.

Таблица 12 – Значения потока в электронах и отношения сигнал/шум для зенитного угла  $\theta = 0$  градусов. Рассматриваемое время накопления  $T_{\rm H} = 0.37$  с

| Зенитный угол 0 гр                  | Спектральная область Δλ = 400 – 1000 нм              |                                                      |         |         |  |
|-------------------------------------|------------------------------------------------------|------------------------------------------------------|---------|---------|--|
| Радиус диффузной сферы R3, м        | 0,55 0,18 0,11 0,028                                 |                                                      |         |         |  |
| Поток Фоб, в электронах, 1.0е+003 * | 5.2560                                               | 1.7201                                               | 1.0512  | 0.2676  |  |
| Отношение сигнал/шум, q             | 305.8690                                             | 100.1026                                             | 61.1738 | 15.5715 |  |
|                                     | Спектр                                               | Спектральная область $\Delta \lambda = 400 - 500$ нм |         |         |  |
| Поток Фоб, в электронах, 1.0е+003 * | 0.921                                                | 0.3014                                               | 0.1842  | 0.0469  |  |
| Отношение сигнал/шум, q             | 53.5983                                              | 17.5413                                              | 10.7197 | 2.7286  |  |
|                                     | Спектральная область Δλ = 500 – 600 нм               |                                                      |         | 600 нм  |  |
| Поток Фоб, в электронах, 1.0е+003 * | 1.3432                                               | 0.4396                                               | 0.2686  | 0.0684  |  |
| Отношение сигнал/шум, q             | 78.1668                                              | 25.5819                                              | 15.6334 | 3.9794  |  |
|                                     | Спектральная область $\Delta \lambda = 600 - 800$ нм |                                                      |         |         |  |
| Поток Фоб, в электронах, 1.0е+003 * | 2.3720                                               | 0.7763                                               | 0.4744  | 0.1208  |  |
| Отношение сигнал/шум, q             | 138.0352                                             | 45.1751                                              | 27.6070 | 7.0272  |  |

|                                     | Спектральная область Δλ = 800 – 1000 нм |         |        |        |
|-------------------------------------|-----------------------------------------|---------|--------|--------|
| Поток Фоб, в электронах, 1.0е+003 * | 0.619                                   | 0.2028  | 0.1239 | 0.0316 |
| Отношение сигнал/шум, q             | 36.0687                                 | 11.8043 | 7.2137 | 1.8362 |

Таблица 13 — Значения потока в электронах и отношения сигнал/шум для зенитного угла  $\theta = 0$  градусов. Рассматриваемое время накопления  $T_{\rm H} = 1$  с

| Зенитный угол 0 гр                  | Спектральная область Δλ = 400 – 1000 нм              |              |                             |         |
|-------------------------------------|------------------------------------------------------|--------------|-----------------------------|---------|
| Радиус диффузной сферы R3, м        | 0,55                                                 | 0,18         | 0,11                        | 0,028   |
| Поток Фоб, в электронах, 1.0е+003 * | 14.205                                               | 4.649        | 2.841                       | 0.723   |
| Отношение сигнал/шум, q             | 786.3357                                             | 257.3462     | 157.2671                    | 40.0316 |
|                                     | Спектр                                               | альная облас | ть $\Delta \lambda = 400 -$ | 500 нм  |
| Поток Фоб, в электронах, 1.0е+003 * | 2.4892                                               | 0.8147       | 0.4978                      | 0.1267  |
| Отношение сигнал/шум, q             | 137.7919                                             | 45.0955      | 27.5584                     | 7.0149  |
|                                     | Спектральная область $\Delta \lambda = 500 - 600$ нм |              |                             | 600 нм  |
| Поток Фоб, в электронах, 1.0е+003 * | 3.6303                                               | 1.1881       | 0.7261                      | 0.1848  |
| Отношение сигнал/шум, q             | 200.9533                                             | 65.7665      | 40.1907                     | 10.2303 |
|                                     | Спектр                                               | альная облас | ть $\Delta\lambda = 600 - $ | 800 нм  |
| Поток Фоб, в электронах, 1.0е+003 * | 6.4107                                               | 2.0981       | 1.2821                      | 0.3264  |
| Отношение сигнал/шум, q             | 354.8643                                             | 116.1374     | 70.9729                     | 18.0658 |
|                                     | Спектральная область Δλ = 800 – 1000 нм              |              |                             | 1000 нм |
| Поток Фоб, в электронах, 1.0е+003 * | 1.6751                                               | 0.5482       | 0.3350                      | 0.0853  |
| Отношение сигнал/шум, q             | 92.7264                                              | 30.3468      | 18.5453                     | 4.7206  |

Таблица 14 — Значения потока в электронах и отношения сигнал/шум для зенитного угла  $\theta$  = 70 градусов. Рассматриваемое время накопления  $T_{\rm H}$  = 0.37 с

| Зенитный угол 70 гр                 | Спектра                                              | альная област                                        | $\Delta \Delta \lambda = 400 - 1000$ нм |         |
|-------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------|---------|
| Радиус диффузной сферы R3, м        | 0,55                                                 | 0,18                                                 | 0,11                                    | 0,028   |
| Поток Фоб, в электронах, 1.0е+003 * | 4.2477                                               | 1.3902                                               | 0.8495                                  | 0.2162  |
| Отношение сигнал/шум, q             | 247.192                                              | 80.8992                                              | 49.4384                                 | 12.5843 |
|                                     | Спектр                                               | Спектральная область $\Delta \lambda = 400 - 500$ нм |                                         |         |
| Поток Фоб, в электронах, 1.0е+003 * | 0.6813                                               | 0.2229                                               | 0.1362                                  | 0.034   |
| Отношение сигнал/шум, q             | 39.6481                                              | 12.9757                                              | 7.9296                                  | 2.0184  |
|                                     | Спектральная область $\Delta \lambda = 500 - 600$ нм |                                                      |                                         | 600 нм  |
| Поток Фоб, в электронах, 1.0е+003 * | 1.0945                                               | 0.3582                                               | 0.2189                                  | 0.0557  |
| Отношение сигнал/шум, q             | 63.6915                                              | 20.8445                                              | 12.7383                                 | 3.2425  |
|                                     | Спектральная область $\Delta \lambda = 600 - 800$ нм |                                                      |                                         | 800 нм  |
| Поток Фоб, в электронах, 1.0е+003 * | 1.9816                                               | 0.6485                                               | 0.3963                                  | 0.1009  |
| Отношение сигнал/шум, q             | 115.3205                                             | 37.7413                                              | 23.0641                                 | 5.8709  |

|                                     | Спектральная область Δλ = 800 – 1000 нм |        |        |        |
|-------------------------------------|-----------------------------------------|--------|--------|--------|
| Поток Фоб, в электронах, 1.0е+003 * | 0.4902                                  | 0.1604 | 0.098  | 0.024  |
| Отношение сигнал/шум, q             | 28.5320                                 | 9.3377 | 5.7064 | 1.4525 |

Таблица 15 – Значения потока в электронах и отношения сигнал/шум для

зенитного угла  $\theta$  = 70 градусов. Рассматриваемое время накопления  $T_{\rm H}$  = 1 с

| Зенитный угол 70 гр                 | Спектральная область Δλ = 400 – 1000 нм               |              |                             |         |  |
|-------------------------------------|-------------------------------------------------------|--------------|-----------------------------|---------|--|
| Радиус диффузной сферы R3, м        | 0,55 0,18 0,11 0,028                                  |              |                             |         |  |
| Поток Фоб, в электронах, 1.0е+003 * | 11.480                                                | 3.757        | 2.296                       | 0.584   |  |
| Отношение сигнал/шум, q             | 635.4875                                              | 207.9777     | 127.0975                    | 32.3521 |  |
|                                     | Спектр                                                | альная облас | ть $\Delta\lambda = 400 -$  | 500 нм  |  |
| Поток Фоб, в электронах, 1.0е+003 * | 1.8414                                                | 0.6026       | 0.3683                      | 0.0937  |  |
| Отношение сигнал/шум, q             | 101.9282                                              | 33.3583      | 20.3856                     | 5.1891  |  |
|                                     | Спектральная область $\Delta \lambda = 500 - 600$ нм  |              |                             |         |  |
| Поток Фоб, в электронах, 1.0е+003 * | 2.9580                                                | 0.9681       | 0.5916                      | 0.1506  |  |
| Отношение сигнал/шум, q             | 163.7397                                              | 53.5875      | 32.7479                     | 8.3358  |  |
|                                     | Спектр                                                | альная облас | ть $\Delta\lambda = 600 - $ | 800 нм  |  |
| Поток Фоб, в электронах, 1.0е+003 * | 5.3558                                                | 1.7528       | 1.0712                      | 0.2727  |  |
| Отношение сигнал/шум, q             | 296.4689                                              | 97.0262      | 59.2938                     | 15.0930 |  |
|                                     | Спектральная область $\Delta \lambda = 800 - 1000$ нм |              |                             | 1000 нм |  |
| Поток Фоб, в электронах, 1.0е+003 * | 1.3251                                                | 0.4337       | 0.2650                      | 0.0675  |  |
| Отношение сигнал/шум, q             | 73.3507                                               | 24.0057      | 14.6701                     | 3.7342  |  |

### Заключение

Проведенное моделирование фотометрического канала оптико-электронной системы ГЕОДСС показало следующее:

1. Оптико-электронная система способна обнаруживать зеркальную сферу диаметром 5,6 см на геостационарной орбите при времени накопления не менее  $T_{\rm H}$ =2 с (обеспечивается требуемое отношение сигнал/шум 4-5), и зенитных углах наблюдения от 0 до 70 градусов в спектральной полосе  $\Delta \lambda = 400 - 1000$  нм.

При работе оптико-электронной системы по зеркальной сфере обеспечиваются требуемые параметры обнаружения только в полосах Джонсона 400 – 500 нм, 500 – 600 нм и 600 – 800 нм. Наихудшие условия обнаружения складываются в полосе 800 – 1000 нм, где мала квантовая эффективность детектора ССІД-16 (η<0,35). Поэтому даже при T<sub>н</sub> ~ 50 с условия обнаружения не соблюдаются.

3. Оптико-электронная система способна обнаруживать диффузную сферу (при фазовом угле  $\varphi=0$ ) диаметром 5,6 см при времени накопления  $T_{\rm H} = 1$  с и зенитных углах наблюдения от 0 до 70 градусов в спектральной полосе  $\Delta\lambda = 400 - 1000$  нм, что соответствует проницающей способности системы  $m_v = 22$ .

4. Оптико-электронная система эффективно работает в трех полосах Джонсона (400 –500 нм, 500 – 600 нм, 600 – 800 нм), следовательно, получает спектральные характеристики космических объектов и может решать задачи их распознавания.

### Библиографический список

 Вениаминов С.С., Червонов А.М. Космический мусор – угроза человечеству. – М.: Изд-во Институт космических исследований РАН, 2012. - 192 с.

2. Пикалов Р.С., Юдинцев В.В. Обзор и выбор средств увода крупногабаритного космического мусора // Труды МАИ. 2018. № 100. URL: http://trudymai.ru/published.php?ID=93299

3. Соколов Н.Л. Метод определения орбитальных параметров космического мусора бортовыми средствами космического аппарата // Труды МАИ. 2014. № 77. URL: <u>http://trudymai.ru/published.php?ID=52950</u>

4. Ашурбейли И.Р., Лаговиер А.И., Игнатьев А.Б., Назаренко А.В. Возможности использования авиационной лазерной системы для борьбы с космическим мусором и поддержания орбит космического аппарата // Труды МАИ. 2011. № 43. URL: <u>http://trudymai.ru/published.php?ID=24856</u>

5. Баркова М.Е. Космический аппарат для утилизации космического мусора в околоземном пространстве // Труды МАИ. 2018. № 103. URL: http://trudymai.ru/published.php?ID=100712

 Меньшиков В.А., Перминов А.Н., Рембеза А.И., Урличич Ю.М. Основы анализа и проектирования космических систем мониторинга и прогнозирования природных и техногенных катастроф. – М.: Машиностроение, 2014. – 736 с.

7. Королев В.О., Гудаев Р.А., Куликов С.В., Алдохина В.Н. Решение задачи распознавания типа объекта на основании использования диаграммы

19

Труды МАИ. Выпуск № 109 DOI: 10.34759/trd-2019-109-16 направленности антенны в качестве признака // Труды МАИ. 2017. № 94. URL: http://trudymai.ru/published.php?ID=81109

8. Лавров В.Н. Аналитический обзор космических программ ДЗЗ России и зарубежных стран, ИнноТер, 2016. URL: https://innoter.com/scientific-articles/1092

9. Капелетти Ш., Гуардуччи Ф., Паолилло Ф., Ридолфи Л., Баттаглиере М.Л., Грациани Ф., Пьержентили Ф., Сантони Ф. Группировка микроспутников для обнаружения космического мусора // Труды МАИ. 2009. № 34. URL: <u>http://trudymai.ru/published.php?ID=8237</u>

 10. Space Surveillance Sensors: GEODSS (Ground-based Electro-Optical Deep Space

 Surveillance)
 System,
 August
 2012,
 available
 at:

 <a href="https://mostlymissiledefense.com/2012/08/20/space-surveillance-sensors-geodss-ground-based-electro-optical-deep-space-surveillance-system-august-20-2012/">https://mostlymissiledefense.com/2012/08/20/space-surveillance-sensors-geodss-ground-based-electro-optical-deep-space-surveillance-system-august-20-2012/

11. Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) System, MITRE
Poster, 2008, available at: <u>http://www.fas.org/spp/</u>military/program/track/
geodss\_poster.pdf

 C. Max Williams and Sam D. Redford. GEODSS Upgrade Prototype System Program Status. Proceedings of the 1996 Space Surveillance Workshop, Lincoln Laboratory, 1996, pp. 99 – 108.

13. Дятлов В. Основные направления развития наземных оптоэлектронных средств контроля космического пространства США // Зарубежное военное обозрение. 2006.
 № 1. С. 50 – 55.

14. Дятлов В. Основные направления развития наземных оптоэлектронных средств контроля космического пространства США. Часть 2 // Зарубежное военное обозрение. 2006. № 2. С. 30 – 35.

15. Зиновьев Ю.С., Мишина О.А., Глущенко А.А. Перспективы развития оптических телескопов наземного и космического базирования // Труды МАИ. 2018. № 101. URL: <u>http://trudymai.ru/published.php?ID=96976</u>

 John R.Tower et al. Large Format Backside Illuminated CCD Imager for Space Surveillance // IEEE Transactions on Electron devices, 2003, vol. 50, no.1, pp. 218 - 224.
 Турков В.Е., Ульянов С.А., Шаховской В.В., Поташов С.Ю. Технологии характеризации космических аппаратов для достижения космической ситуационной осведомленности США // Информационно-измерительные и управляющие системы.

2014. T. 12. № 11. C. 3 - 11.

Лазарев Л.П. Оптико-электронные приборы наведения. - М. : Машиностроение,
 1989. - 512 с.

19. Здор С.Е., Чернов В.С. Влияние параметров оптико-электронных приборов на скорость обзора пространства // Оптико-механическая промышленность. 1985. Т. 52.
№ 7. С. 10 – 13.

20. Арутюнов В.А., Иванов В.Г., Каменев А.А., Прокофьев А.Е. Методика оценки потенциальных характеристик обнаружения малоразмерных аэрокосмических целей многоспектральной аппаратурой на матричных фотоприемниках // Вопросы радиоэлектроники. Серия: Техника телевидения. 2006. № 2. С. 47 - 69.

21

21. Грудзинский М.А. и др. Адаптивные телевизионные системы на ПЗС // Техника средств связи. Серия: Техника телевидения. 1984. № 5. С. 3 – 10.

22. Смелков В.М., Иванов С.А. Камеры с предельной чувствительностью на ПЗС // Техника средств связи. Серия: Техника телевидения. 1985. № 2. С. 26 – 32.