Сравнительный анализ алгоритмов обнаружения объектов с неизвестной поляризационной матрицей рассеяния методом математического моделирования

Калашников В.Б.

Радиотехнический институт имени академика А.Л. Минца, ул. 8 Марта, 10, стр.1, Москва, 127083, Россия e-mail: <u>vkalashnikov@rti-mints.ru</u>

Аннотация

B статье представлены результаты сравнения классических процедур обнаружения (оптимальных и квазиоптимальных) с процедурами обнаружения, учитывающими такой фактор неопределенности в принимаемых поляризационных каналах, как поляризационная матрица рассеяния (ПМР) объекта. Такие процедуры, рассматривающие ПМР как фактор неопределенности, были получены в работах [1] и [2]. В качестве моделей типичных объектов наблюдения рассматриваются конус и цилиндр, находящиеся в различных ракурсах. Для рассматриваемых процедур обнаружения вычисляются характеристики обнаружения, подлежащие сравнению. Оценка характеристик обнаружения выполняется с помощью метода Монте-Карло. На основе полученных результатов делается вывод об эффективности процедур обнаружения учитывающих неизвестную ПМР априори сравнении С В классическими процедурами обнаружения.

Ключевые слова: полный поляризационный анализ, поляризационная матрица рассеяния, оптимальное обнаружение, характеристики обнаружения, метод Монте-Карло, моделирование.

Введение

С развитием радиолокационной техники создание стало возможно радиолокационных станций (РЛС) с полным поляризационным анализом (ППА). Под полным поляризационным анализом понимается излучение и прием сигналов на двух ортогональных поляризациях. Использование полного поляризационного анализа в современных радиолокаторах призвано улучшить характеристики обнаружения и получить дополнительную информацию о наблюдаемом объекте. Поскольку такой радиолокатор представляет собой двухканальную систему, он требует разработки новых оптимальных процедур обнаружения. Однако, как было показано в работах [1] и [2] оптимальные алгоритмы обнаружения, учитывающие такие факторы неопределенности в принимаемом сигнале как поляризационная матрица рассеяния (ПМР), случайная начальная фаза, амплитуда и т.д. имеют достаточно сложные решающие статистики, и, следовательно, достаточно сложны в реализации. В связи с этим возникает вопрос целесообразности использования таких сложно реализуемых алгоритмов на практике по сравнению с классическими алгоритмами, которые удобны в реализации, но проигрывают по точности.

Данная работа посвящена численному сравнению оптимальных и эмпирических алгоритмов обнаружения. Целью работы является получение ответа

на вопрос о том, использование каких алгоритмов является наиболее эффективным с практической точки зрения.

В работах [1] и [2] были получены оптимальные процедуры обнаружения сигнала при полном поляризационном анализе (ППА). В рассмотренных случаях сигнал, принимаемый антенной, представляет собой взвешенную сумму сигналов излученных на каждой из ортогональных поляризаций. Весовыми коэффициентами служат элементы ПМР. Полученные в [1] и [2] процедуры обнаружения рассматривают элементы ПМР как дополнительные факторы неопределенности. Само правило является Байесовским, полученным путем усреднения по элементам ПМР. Этим оно отличается от других правил обнаружения, рассмотренных в данной работе. На практике, поскольку элементы ПМР неизвестны и принципиально не могут быть известны, их просто исключают из рассмотрения, формируя такие эмпирические квазиоптимальные процедуры как "максимум по каналам" или "суммирование в каналах".

Модели сигналов

В предыдущих работах [1] и [2] была рассмотрена ситуация, когда в локаторе с ППА одновременно излучаются два сигнала $u_1(t)$ и $u_2(t)$ на ортогональных линейных поляризациях, тогда модель отраженного сигнала в векторной форме имеет вид:

$$V(t) = M_s U(t), \tag{1}$$

где $M_s = \begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix}$ – поляризационная матрица рассеяния, $U(t) = [u_1(t), u_2(t)]^{\mathrm{T}} -$

векторный излученный сигнал (излучение на двух ортогональных поляризациях).

В скалярном виде формулу (1) можно переписать следующим образом:

$$v_{1}(t) = s_{11}u_{1}(t) + s_{12}u_{2}(t),$$

$$v_{2}(t) = s_{21}u_{1}(t) + s_{22}u_{2}(t).$$
(2)

Тогда принимаемый сигнал можно представить в виде:

$$g_1(t) = v_1(t) + \eta_1(t),$$

$$g_2(t) = v_2(t) + \eta_2(t),$$
(3)

где, $\eta_i(t)$ – шум, принимаемый *j*-й антенной.

Описание правил обнаружения подлежащих сравнению

Все правила подлежащие сравнению являются пороговыми, и в общем виде записываются следующим образом:

$$H_1: S(G) \ge h, \tag{4}$$
$$H_0: S(G) < h,$$

где H_1 – гипотеза о наличие принимаемого сигнала, H_0 – гипотеза об отсутствии принимаемого сигнала, G – наблюдения, S(G) – достаточная статистика, h – порог.

В таблице 1 представлены правила обнаружения и их характеристики подлежащие сравнению, конкретизированные для описанных моделей сигналов (1), (2) и (3).

Таблица 1

Сводная таблица правил и характеристик обнаружения подлежащих сравнению

Правило	Описание	Процедура обнаружения	Характеристики	
JNO			Оонаружения	
	Одноканальный оптимальный		$h = 2\pi \sqrt{\pi} \Phi^{-1} (1 - 2E)$	
	известного сигнала [3]		$h = 2s_{11}\sqrt{q}\Phi (1-2F)$	
	известного сигнала [5],	$\frac{ 2s_{11} }{ u_1(t)g_1(t)dt } \ge h$	Вероятность правильного	
	правильного обнаружения при	$N_0 = 0$ <	оонаружения:	
	фиксированном уровне ложной	d0	$D = \frac{1}{h} + \frac{1}{p} \phi \left(s \sqrt{a} - \frac{h}{m} \right)$	
1	тревоги. Рассматривается	где N_0 - спектральная плотность	$2 2 2 \left(\frac{s_{11}\sqrt{q}}{2} 2 s_{11}\sqrt{q} \right)$	
	применительно к	помехи приемника, <i>h</i> - порог	где $q = E/N_0$ – отношение	
	одноканальному локатору.	обнаружения, d_1 – принимаемое	сигнал/шум, $\varPhi^{\text{-1}}(.)$ –	
	осуществляющему	решение о наличие сигнала,	обратная функция для	
	одноканальное излучение и	d_0 – принимаемое решение об	интеграла вероятностей, <i>F</i> –	
	прием.	отсутствии сигнала.	заданная вероятность	
	*		ложной тревоги	
	Квазиоптимальный		Порог:	
	обнаружитель, использующий	$ H_0 \max \frac{ g_k }{2} < h$	$h = 2\sqrt{q \ln \frac{1}{F}}$	
	эмпирическое правило	$\int \int \sigma_k^2 \sigma_k^2$		
2	обнаружения «максимум по	$ H_1 \max \frac{ g_k }{2} \ge h$		
2	каналам». Используется в	$\begin{bmatrix} 1 & k=1,2 & \sigma_k^2 \end{bmatrix}$	обнаружения Д	
	двухканальном локаторе,	где $ g_k $ – комплексные амплитуды в	определяется численно	
	осуществляющем излучение и	k -ом канале, $\sigma_k^2 = \beta^2 - $ дисперсия	путем математического	
	прием сигнала на двух	шума в <i>k</i> -ом канале	молелирования	
	Оптимальный обнаружитель		riter r	
	максимизирующий вероятность			
	правильного обнаружения при			
	фиксированном уровне ложной	$(25.T)^2$		
	тревоги. Рассматривается	$\left(\frac{2\partial_{ij}}{dt} \int u_{i}(t)g_{i}(t)dt + \frac{m_{ij}}{dt}\right)$		
	двухканальный локатор,	$\sum \left(N_{0j} \int_{0}^{j} \delta_{ij} \right) \geq k$	Характеристики	
	осуществляющий излучение и	$\sum_{ij=1,2} \frac{2q_{ij}\delta_{ij}^2 + 1}{2q_{ij}\delta_{ij}^2 + 1} < n$	обнаружения определяются	
3	прием сигнала на двух	$r_{n} = m_{n}$ — математические ожилания	численно путем	
	ортогональных поляризациях.	s_{ij} matematic leckie owindumi	математического	
	При этом отраженный от	случаиных величин S_{ij} , O_{ij} –	моделирования	
	объекта сигнал не имеет	дисперсии случайных величин s_{ij} , h -		
	неизвестных параметров, за	порог, вычисляемый численно.		
	исключением ПМР объекта, а			
	элементы ПМР имеют			
	гауссовское распределение [1].	$(\tau)^2 (\tau)^2$		
		$\int_{a} \left[\int_{a}^{b} u_{i}(t)g_{i}(t)dt \right] = \left[\int_{a}^{b} u_{i}(t)g_{i}(t)dt \right]$		
		$\left \sum_{i=1}^{n}\right \left \frac{b_{i}}{b_{i}} - \frac{b_{i}}{b_{i}} \right + \ln \left \Phi \right \left \frac{d_{2} L_{i}}{N} - \frac{b_{i}}{b_{i}} - \frac{b_{i}}{b_{i}} \right - \frac{b_{i}}{b_{i}} - b_{i$		
		$[i,j=1]$ E_i $[N_{0j}$ E_i		
	Аналогично правилу 3, за	$\left(\int_{\mathcal{A}^{ji}E^{i}} \int_{0}^{t} u_{i}(t)g_{i}(t)dt \right) \right) \lesssim$	Характеристики	
	исключением того, что	$\left -\phi\right \frac{d_{1}E_{i}}{M}-\frac{1}{2}\sum_{i=1}^{N}\left \left \left \frac{d_{1}E_{i}}{E_{i}}-\frac{1}{2}\right \right ^{2}\right $	обнаружения определяются	
4	элементы ПМР имеют	$ I V_{0j} E_i \leq J$	численно путем	
	равномерное пространственное	T	математического	
	распределение (РПР) [2]	где $E_i = \int u_i(t)^2 d(t)$ – энергия сигнала,	моделирования	
		0		
		$[d_1^{ij}, d_2^{ij}]$ – интервалы области		
		$D_{P\Pi P} \in \left d_1^{11}, d_2^{11} \right \times \left d_1^{12}, d_2^{12} \right \times \left d_1^{21}, d_2^{21} \right \times \left d_1^{22}, d_2^{22} \right $		
		ограничивающей элементы ПМР.		

Продолжение таблицы 1

Правило №	Описание	Процедура обнаружения	Характеристики обнаружения
5	Квазиоптимальный обнаружитель, максимизирующий вероятность правильного обнаружения при фиксированном уровне ложной тревоги. Рассматривается двухканальный локатор, осуществляющий излучение и прием сигнала на двух ортогональных поляризациях. При этом отраженный от объекта сигнал не имеет неизвестных параметров, за исключением ПМР объекта, а элементы ПМР имеют РПР. Правило было получено из оптимального правила 4 путем отбрасывания суммы логарифмов.	$\sum_{i,j=1}^{2} \left(\frac{\int_{0}^{T} u_i(t) g_j(t) dt}{E_i} \right)^2 \frac{d_1}{\geq} h.$ с h. d ₀ где $E_i = \int_{0}^{T} u_i(t)^2 d(t)$ – энергия сигнала.	Порог вычисляется из уравнения: $\left(\frac{hE^2}{2\beta^2}+1\right)e^{-\frac{hE^2}{2\beta^2}}-F=0$ Вероятность правильного обнаружения: $D = \int_{h}^{\infty} \omega_{H_1}(p)dp$, где $\omega_{H_1}(p)$ – достаточная статистика вида: $\omega_{H_1}(p) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty} \frac{\exp\left(itp + \frac{4t}{1-2id^4t}\right)}{4\pi^2\left(\frac{1}{d^2} + 2id^2t\right)^2}dt$, где $d^2 = \frac{\beta^2}{E^2}$ – дисперсия достаточной статистики $\omega_{H_1}(p)$ при гипотезе наличия сигнала.
6	Оптимальный обнаружитель полностью известного сигнала, максимизирующий вероятность правильного обнаружения при фиксированном уровне ложной тревоги. Рассматривается применительно к двухканальному локатору, осуществляющий излучение и прием на двух ортогональных поляризациях [1].	$\frac{d1}{\sum_{i,j=1}^{2} \frac{2s_{ji}}{N_{0j}} \int_{0}^{T} u_{i}(t)g_{j}(t)dt} \stackrel{\geq}{<} h$ d0 где N_{0j} - спектральная плотность помехи в j-м приемнике	Порог: $h = 2\sqrt{q \sum_{i,j=1,2} s_{ji}^2} \Phi^{-1}(1-2F)$ Вероятность правильного обнаружения: $D = \frac{1}{2} + \frac{1}{2} \Phi \left(\sqrt{q \sum_{i,j=1,2} s_{ji}^2} - \frac{h}{2\sqrt{q \sum_{i,j=1,2} s_{ji}^2}} \right)$

Для всех перечисленных правил из таблицы 1 оценка характеристик обнаружения выполняется с помощью метода Монте-Карло. При этом моделируется зависимость вероятности правильного обнаружения D от отношения сигнал/шум q при заданной вероятности ложной тревоги $F=10^{-4}$, дисперсии шума $\beta^2=0.32$ и ПМР наблюдаемого объекта.

Стоит отметить, что при получении правил 3 и 4 считалось, что ПМР объекта является вещественной. Обычно ПМР представляет собой комплексную матрицу,

однако при определенных ракурсах мнимые части элементов ПМР существенно малы и тогда ими можно пренебречь, получив вещественную ПМР.

Сравнение характеристик обнаружения типичных объектов

В качестве типичных объектов наблюдения рассматриваются две фигуры: конус и цилиндр. Для расчета поляризационных матриц рассеяния типичных объектов была использована программа моделирования обратного рассеяния от объекта сложной формы, разработанная сотрудниками отдела 055 ОАО РТИ и основанная на фасеточной модели.

Объект обнаружения типа конус. На рисунке 1 изображен типичный объект обнаружения: конус радиусом 1 м и длиной 2 м с идеально проводящей поверхностью. Объект ориентирован под углом 30° по вертикальной оси (ось Z). Угол наклона изменяется от 0 до 90 градусов от вертикальной оси к наблюдателю.

Рисунок 1 – Объект типа конус

На рисунке 2 представлена угловая диаграмма рассеяния объекта типа конус.

Рисунок 2 – Угловая диаграмма рассеяния объекта типа конус

Из рисунка 2 видно, что при углах наклона объекта в районе 15° и 30° мнимые

части его элементов ПМР
$$M_s = \begin{pmatrix} HH.Re+HH.Im & HV.Re+HV.Im \\ HV.Re+HV.Im & VV.Re+VV.Im \end{pmatrix}$$
 существенно

малы (*HH*.Im≈0, *HV*.Im≈0, *VV*.Im≈0). Пренебрегая существенно малыми мнимыми частями элементов ПМР М_s получаем вещественные поляризационные матрицы рассеяния объекта типа конус находящегося в ракурсах 15° и 30°:

$$M_{s}^{15^{\circ}} = \begin{pmatrix} -0.16 & -0.05 \\ -0.05 & 0.2 \end{pmatrix},$$
(5)

$$M_s^{30^\circ} = \begin{pmatrix} 0.11 & 0.08\\ 0.08 & -0.11 \end{pmatrix}.$$
 (6)

На рисунках 3 и 4 представлены графики зависимостей вероятности правильного обнаружения D от отношения сигнал/шум q для рассматриваемых правил обнаружения объекта типа конус, находящегося под наклоном 15° и 30° при заданных значениях $F=10^{-4}$, $\beta^2=0.32$, $D_{P\Pi P} \in [10^{-5}, 10^{-2}] \times [10^{-5}, 10^{-4}] \times [10^{-5}, 10^{-5}] \times [10^{-5}, 10^{-5}] \times [10^{-5}, 10^{-5}] \times [10^{-5}, 10^{$

Рисунок 3 – Зависимость D(q) при угле наклона объекта типа конус 15°

Рисунок 4 – Зависимость D(q) при угле наклона объекта типа конус 30°

На рисунках 3 и 4 первая кривая описывает зависимость D от q для правила 5 из таблицы 1. Вторая кривая описывает зависимость D от q для правила 1 таблицы 1. Третья и четвертая кривая описывает зависимость D от q в случае ППА при априори неизвестной ПМР (правило 4 и 3 соответственно). Пятая кривая описывает зависимость D от q в случае (правило 6 таблицы 1). Шестая кривая описывает зависимость D от q для правила 2 таблицы 1.

Анализ приведённых графиков показывает, что оптимальное правило обнаружения при ППА и полностью известном сигнале (правило 6 таблицы 1) выигрывает у всех остальных рассматриваемых правил во всех случаях. Так же видно, что при угле наклона объекта типа конус = 30° вероятность правильного обнаружения *D* при одних и тех же значениях *q* у всех рассматриваемых правил значительно ниже, чем при угле наклона конуса = 15° . Оптимальные правила, учитывающие априори неизвестную ПМР (правило 3 и 4 таблицы 1) выигрывают у классического одноканального правила и у эмпирического правила обнаружения «максимум по каналам» (правило 2 таблицы 1). Среди оптимальных правил обнаружения, учитывающих априори неизвестную ПМР, во всех рассмотренных случаях выигрывает правило 4.

Объект обнаружения типа цилиндр

На рисунке 5 изображен типичный объект обнаружения: цилиндр, радиус цилиндра – 1 м, длина – 2.5 м с идеально проводящей поверхностью. Объект ориентирован под углом 30° по вертикальной оси (ось Z). Угол наклона изменяется от 0 до 90 градусов от вертикальной оси к наблюдателю.

Рисунок 5 – Объект типа цилиндр

На рисунке 6 представлена угловая диаграмма рассеяния объекта типа цилиндр.

Рисунок 6 – Угловая диаграмма рассеяния объекта типа цилиндр

Из рисунка 6 видно, что при углах наклона объекта типа цилиндр в районе 9° и 39° мнимые части его элементов ПМР $M_s = \begin{pmatrix} HH.Re+HH.Im & HV.Re+HV.Im \\ HV.Re+HV.Im & VV.Re+VV.Im \end{pmatrix}$ существенно малы (*HH.Im*≈0, *HV.Im*≈0, *VV.Im*≈0). Пренебрегая существенно малыми мнимыми частями элементов ПМР M_s получаем вещественные поляризационные матрицы рассеяния объекта типа цилиндр находящегося в ракурсе 9° и 39° :

$$M_{s}^{9^{\circ}} = \begin{pmatrix} 0.07 & -0.11 \\ -0.11 & 0.07 \end{pmatrix},$$
(7)

$$M_{s}^{39^{\circ}} = \begin{pmatrix} 0.14 & -0.06 \\ -0.06 & -0.19 \end{pmatrix}.$$
 (8)

На рисунках 7 и 8 представлены графики зависимостей вероятности правильного обнаружения *D* от отношения сигнал/шум *q* для рассматриваемых правил обнаружения объекта типа цилиндр, находящегося под наклоном 9° и 39°

при заданных значениях $F=10^{-4}$, $\beta^2=0.32$, $D_{P\Pi P} \in [10^{-5}, 10^{-2}] \times [10^{-5}, 10^{-4}] \times [10^{-5}, 10^{-5}] \times [10^{-5}, 10^{-5}] \times [10^{-5}, 10^{-5}] \times [10^{-5},$

×[10⁻⁵, 10⁻³],
$$M_s^{9^\circ} = \begin{pmatrix} 0.07 & -0.11 \\ -0.11 & 0.07 \end{pmatrix}$$
 и $M_s^{39^\circ} = \begin{pmatrix} 0.14 & -0.06 \\ -0.06 & -0.19 \end{pmatrix}$ соответственно.

Рисунок 7 – Зависимость D(q) при угле наклона объекта типа цилиндр 9°

Рисунок 8 – Зависимость D(q) при угле наклона объекта типа цилиндр 39°

На рисунках 7 и 8 первая кривая описывает зависимость *D* от *q* для правила 5 таблицы 1. Вторая кривая описывает зависимость *D* от *q* для правила 1 таблицы 1. Третья и четвертая кривая описывает зависимость *D* от *q* в случае ППА при априори неизвестной ПМР (правило 4 и 3 соответственно). Пятая кривая описывает

зависимость *D* от *q* в случае ППА при полностью известном сигнале (правило 6 таблицы 1). Шестая кривая описывает зависимость *D* от *q* для правила 2 таблицы 1.

Анализ приведённых графиков показывает сходные результаты с результатами, полученными для объекта типа конус. Лучшие характеристики во всех случаях показывает оптимальное правило обнаружения при ППА и полностью известном сигнале (правило 6 таблицы 1), однако это достигается только тогда, когда статистика обнаружителя включает информацию о свойствах объекта, которая обычно наблюдателю неизвестна. Наихудшие характеристики у классического одноканального правила обнаружения (правило 1 таблицы 1) и у эмпирического правила «максимум по каналам» применяющегося на практике (правило 2).

Для качественного анализа эффективности рассматриваемых правил в таблице 2 представлены значения *q* по уровню *D*=0.9, полученные из характеристик обнаружения этих правил.

Таблица 2

Значения q по уровню D=0.9 для различных правил обнаружения при различных
видах типичных целей, находящихся в различных ракурсах.

D =0.9									
Кривая №	Правило №	q, разы	q, дБ	Потери по отн-ю к правилу 6, дБ	Выигрыш от ППА, дБ	Выигрыш по отн-ю к правилу «максимум по каналам», дБ	Ракурс, градусы	Тип объекта	
1	5	242,775	23,852	1,333	1,109	0,944			
2	1	313,402	24,961	2,442	-	-	15	Конус	
3	4	221,637	23,456	0,937	1,505	1,340			
4	3	236,558	23,739	1,220	1,222	1,057	15		
5	6	178,614	22,519	-	2,442	2,277			
6	2	301,714	24,796	2,277	0,165	-			
1	5	461,409	26,641	1,249	>3,359	1,066		5	
2	1	>1000	>30,0	>4,608	-	-	30		
3	4	390,535	25,917	0,525	>4,083	1,791			
4	3	461,204	26,639	1,247	>3,361	1,068	50		
5	6	346,101	25,392	-	>4,608	2,315			
6	2	589,839	27,707	2,315	>2,293	-			
1	5	509,040	27,068	1,356	>2,932	1,000			
2	1	>1000	>30,0	>4,288	-	-			
3	4	441,793	26,452	0,741	>3,548	1,615	9		
4	3	529,887	27,242	1,530	>2,758	0,826			
5	6	372,529	25,712	-	>4,288	2,356			
6	2	640,844	28,068	2,356	>1,932	-		Цилиндр	
1	5	282,517	24,510	1,275	3,561	0,836		· •	
2	1	641,463	28,072	4,837	-	-	39		
3	4	219,817	23,421	0,185	4,651	1,926			
4	3	278,192	24,443	1,208	3,628	0,903			
5	6	210,628	23,235	-	4,837	2,112			
6	2	342,513	25,347	2,112	2,725	-			

Из таблицы 2 видно, что наилучшие значения *q* достигаются в случае обнаружения объекта типа конус, находящегося под углом 15°. Наихудшие значения *q* получаются в случае обнаружения объекта типа цилиндр, находящегося под углом 9°. Среди оптимальных правил, полученных для случая ППА и априори неизвестной

ПМР, наибольший интерес вызывает правило 4. Это правило энергетически эффективнее классического одноканального правила 1 более чем на 4 дБ, эмпирического правила «максимум по каналам» на 1,926 дБ, и имеет минимальные энергетические потери 0,185 дБ по отношению к оптимальному правилу 6, полученного для случая ППА и полностью известного сигнала.

Выводы

Проведенный анализ показал, что лучшим правилом обнаружения с точки зрения энергетической эффективности и простоты реализации является правило 6, полученное для случая ППА и полностью известного сигнала. Такое правило энергетически эффективнее классического одноканального правила более чем на 4 дБ и эмпирического правила «максимум по каналам» более чем на 2 дБ. Однако такой выигрыш может быть достигнут только тогда, когда статистика обнаружителя включает информацию о свойствах объекта, которая обычно наблюдателю неизвестна. Поэтому такое правило носит больше теоретическую, чем практическую ценность. Следующим по эффективности является оптимальное правило 4, полученное для случая ППА и априори неизвестной ПМР имеющей равномерное пространственное распределение (РПР). Такое правило энергетически эффективнее классического одноканального правила более чем на 4 дБ, эмпирического правила «максимум по каналам» на 1,926 дБ и имеет минимальные энергетические потери 0,185 дБ по отношению к оптимальному правилу 6. Кроме того, это правило не более чем на 1 дБ эффективнее оптимального правила 3, полученного для случая ППА и априори неизвестной ПМР имеющей гауссовское распределение, что

является ожидаемым результатом, поскольку при РПР элементов ПМР не накладывается условие на стабильность обнаруживаемого объекта.

Проведенный анализ показал, что полученные оптимальные правила обнаружения при ППА, учитывающие такие факторы неопределенности в принимаемом сигнале, как ПМР, безусловно, эффективнее классических правил обнаружения. Среди таких правил, учитывающих априори неизвестную ПМР, наиболее эффективным оказалось оптимальное правило обнаружения 4 при ППА и РПР элементов ПМР. И не смотря на достаточно сложную техническую реализацию такого правила, его применение оправдывается большой эффективностью по сравнению с классическими правилами обнаружения.

Работа выполнена при поддержке гранта Президента РФ

(№ НШ-6831.2016.8).

Библиографический список

 Калашников В.Б., Верденская Н.В., Иванова И.А. Решение задач обнаружения при полном поляризационном анализе // Вестник воздушно-космической обороны.
 2014. №3 (3). С. 104 – 111.

2. Калашников В.Б. Оптимальное правило обнаружения неизвестного объекта при полном поляризационном анализе // Материалы II Всероссийско й научнотехнической конференции «Перспективы развития РЛС дальнего обнаружения и

интегрированных систем и комплексов информационного обеспечения Воздушнокосмической обороны». Москва, 2014. С. 223 – 229.

 Сосулин Ю.Г., Теоретические основы радиолокации и радионавигации. – М.: Радио и Связь, 1999. – 304 с.

4. Novak L.M., Sechtin M.B., Cardullo M.J. Studies of Target Detection Algorithms That Use Polarimetric Radar Data, IEEE Transactions on Aerospace and Electronic Systems, vol. AES-25, No.2, March, 1989.

Серкин Ф.Б., Важенин Н.А., Вейцель В.В. Сравнительный анализ алгоритмов оценки отношения сигнал-шум на основе квадратурных компонент принимаемого сигнала // Труды МАИ, 2015, №83: http://www.mai.ru/science/trudy/published.php?ID=62221

6. Майоров Д.А., Перехожев В.А., Шемяков А.О. Разработка алгоритма получения и обработки спектральных признаков воздушного объекта в интересах идентификации и селекции движущихся целей // Труды МАИ, 2013, №71: http://www.mai.ru/science/trudy/published.php?ID=47077