УДК 539.3

Распространение нестационарных осесимметричных возмущений от поверхности шара, заполненного псевдоупругой средой Коссера

Лай Тхань Туан, Тарлаковский Д.В.

Аннотация

Рассматривается нестационарная осесимметричная задача о распространении кинематических возмущений от поверхности шара, заполненного однородной изотропной средой со стестненным вращением – псевдоконтинуумом Коссера. Такие модели находят применение при исследовании поведения различных конструкций из композиционных материалов, в том числе объектов авиационной и ракетно-космической техники. Для решения используются разложения в ряды по полиномам Лежандра и преобразование Лапласа по времени. Для нахождения оргиналов применяется асимптотический метод – представление искомных функций в виде степенных рядов по времени, что соответствует разложению изображений в ряды Лорана в окрестности бесконечно удаленной точки.

Ключевые слова

псевдоконтинуум Коссера; преобразование Лапласа; осевая симметрия; асимптотическое решение.

Введение

При исследовании динамических процессов в композиционных материалах, которые в последнее время широко используются в конструкциях объектов авиационной и ракетнокосмической техники, требуются модели сплошных сред, отличные от традиционных. Например, классическая теория упругости основывается на идеализированной модели упругого континуума, в которой материальная частица совпадает с точкой, а деформированное состояние описывается перемещением точки. Несмотря на то, что теория упругости успешно описывает распределение напряжений в конструкциях, существуют и модели сред, учитывающих внутренний момент количества движения, при которых она становится неприменимой.

Общая теория моментной упругости была разработана братьями Коссера [1]. Здесь в отличие от классической теории упругости деформация среды описывается не только вектором перемещения **u**, но также вектором поворота $\boldsymbol{\omega}$, являющимся функцией координат частицы и времени. Линейная теория среды Коссера рассмотрена в статье [2], а дополнительный учет температурного поля приведен в книге [3]. В последней работе также изложена упрощенная модель континуума Коссера со стесненным вращением частиц (псевдоконтинуума), которая характеризуется зависимостью вектора угла поворота от вектора перемещения: $\boldsymbol{\omega} = 1/2 \operatorname{rot} \mathbf{u}$. В статье [4] для такой среды введена функция напряжений и потенциалы для изотропной центральносимметричной среды.

Постановка задачи

Предполагается, что сплошной шар радиуса R_0 с центром в точке *O* заполнен однородной изотропной средой псевдокоссера. Ее уравнение движения при отсутствии массовых сил имеет вид [3]:

$$\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = \mu \Delta \mathbf{u} + (\lambda + \mu) \operatorname{grad} \operatorname{div} \mathbf{u} + 1/4 (\gamma + \varepsilon) \operatorname{rot} \operatorname{rot} \Delta \mathbf{u}, \qquad (1)$$

где ρ и λ , μ - плотность и упругие постоянные Ламе среды; γ и ε - дополнительные физические характеристики среды; Δ - оператор Лапласа; t - время. Далее будем использовать сферическую систему координат r, θ, θ с центром $O: r \ge 0, 0 \le \theta \le \pi, -\pi < \theta \le \pi$.

Используя разложение поля перемещений на потенциальную и вихревую составляющие и предполагая осесимметричный характер задачи (искомые функции зависят только от времени, радиуса r и угла θ), выражаем тангенциальное v и нормальное w перемещения через скалярный потенциал φ и ненулевую компоненту векторного потенциала ψ :

$$u_r = w = \frac{\partial \varphi}{\partial r} + \frac{1}{r} \left(\frac{\partial \psi}{\partial \theta} + \psi c t g \theta \right), \quad u_\theta = v = \frac{1}{r} \left(\frac{\partial \varphi}{\partial \theta} - \psi \right) - \frac{\partial \psi}{\partial r}, \quad u_\theta = 0, \tag{2}$$

а уравнение (1) заменяем следующей эквивалентной системой (точками обозначены производные по времени):

$$\ddot{\varphi} = \Delta \varphi, \quad \ddot{\psi} - \frac{1-\kappa}{2} \left(\Delta \psi - \frac{\psi}{r^2 \sin^2 \theta} \right) + \frac{\eta + \xi}{4} \left(\Delta \psi_* - \frac{\psi_*}{r^2 \sin^2 \theta} \right) = 0;$$

$$\psi_* = \Delta \psi - \frac{\psi}{r^2 \sin^2 \theta}, \quad \Delta = \frac{1}{r^2} \left[\frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \frac{\partial}{\partial \theta} \right) \right].$$

$$(3)$$

Координаты вектора угла поворота о связаны с перемещениями так:

$$\omega_r = \omega_\theta \equiv 0, \quad \omega_g = \omega = \frac{1}{2r} \left[\frac{\partial}{\partial r} (rv) - \frac{\partial w}{\partial \theta} \right]. \tag{4}$$

В свою очередь компоненты тензора деформаций $\varepsilon_{\alpha\beta}$ и изгиба-кручения $\chi_{\alpha\beta}$ ($\{\alpha, \beta\} = \{r, \theta, \vartheta\}$) определяются следующим образом:

$$\varepsilon_{rr} = \frac{\partial w}{\partial r}, \quad \varepsilon_{r\theta} = \frac{\partial v}{\partial r} - \omega, \quad \varepsilon_{\theta r} = \frac{1}{r} \left(\frac{\partial w}{\partial \theta} - v \right) + \omega, \quad \varepsilon_{\theta \theta} = \frac{1}{r} \left(\frac{\partial v}{\partial \theta} + w \right), \quad \varepsilon_{gg} = \frac{1}{r} \left(w + v \operatorname{ctg} \theta \right); \quad (5)$$

$$\chi_{rg} = \frac{\partial \omega}{\partial r}, \quad \chi_{\theta g} = \frac{1}{r} \frac{\partial \omega}{\partial \theta}, \quad \chi_{gr} = -\frac{\omega}{r}, \quad \chi_{g\theta} = -\frac{\omega}{r} \operatorname{ctg} \theta.$$
 (6)

Физические соотношения для рассматриваемой среды имеют вид:

$$\mu_{rg} = \xi_{+}\chi_{rg} + \xi_{-}\chi_{gr}, \quad \mu_{\theta\theta} = \xi_{+}\chi_{\theta\theta} + \xi_{-}\chi_{g\theta}, \quad \mu_{gr} = \xi_{+}\chi_{gr} + \xi_{-}\chi_{r\theta}, \quad \mu_{g\theta} = \xi_{+}\chi_{g\theta} + \xi_{-}\chi_{\theta\theta}, \quad (7)$$

$$\xi_{+} = \eta + \xi, \quad \xi_{-} = \eta - \xi;$$

$$\sigma_{rr} = \varepsilon_{rr} + \kappa (\varepsilon_{\theta\theta} + \varepsilon_{gg}), \quad \sigma_{r\theta} = \sigma_{r\theta s} - \sigma_{r\theta s}, \quad \sigma_{\theta r} = \sigma_{r\theta s} + \sigma_{r\theta s},$$

$$\sigma_{\theta\theta} = \kappa (\varepsilon_{rr} + \varepsilon_{gg}) + \varepsilon_{\theta\theta}, \quad \sigma_{gg} = \kappa (\varepsilon_{rr} + \varepsilon_{\theta\theta}) + \varepsilon_{gg}, \quad \sigma_{r\theta s} = \frac{1 - \kappa}{2} (\varepsilon_{r\theta} + \varepsilon_{\theta r}),$$

$$\sigma_{r\theta s} = \frac{1}{2} \left\{ \frac{\partial \mu_{rg}}{\partial r} + \frac{1}{r} \left[\frac{\partial \mu_{\theta g}}{\partial \theta} + 2\mu_{rg} + \mu_{gr} + (\mu_{\theta g} + \mu_{g\theta}) \operatorname{ctg} \theta \right] \right\},$$
(8)

где $\sigma_{\alpha\beta}$ и $\mu_{\alpha\beta}$ - компоненты тензоров напряжений и моментных напряжений; $\sigma_{\alpha\beta s}$ и $\sigma_{\alpha\beta *}$ - компоненты симметричной и несимметричной составляющих тензора напряжений.

Считаем, что на поверхности шара заданы перемещения:

$$w|_{r=1} = w_0(\theta, \tau), \quad v|_{r=1} = 0, \quad \omega|_{r=1} = 0,$$
(9)

а начальные условия нулевые:

$$\varphi|_{\tau=0} = \psi|_{\tau=0} = \dot{\varphi}|_{\tau=0} = \dot{\psi}|_{\tau=0} \equiv 0.$$
(10)

Дополнительно полагаем, что компоненты напряженно-деформированного состояния ограничены в области $0 \le r < 1$.

В соотношениях (2) – (10) и далее использованы безразмерные величины (при одинаковом начертании они обозначены штрихами, которые в последующем изложении опущены):

$$\begin{aligned} r' &= \frac{r}{R_0}, \quad w' = \frac{w}{R_0}, \quad v' = \frac{v}{R_0}, \quad \varphi' = \frac{\varphi}{R_0^2}, \quad \psi' = \frac{\psi}{R_0^2}, \quad \chi'_{\alpha\beta} = R_0 \chi_{\alpha\beta}, \quad \sigma'_{\alpha\beta} = \frac{\sigma_{\alpha\beta}}{\lambda + 2\mu}, \\ \mu'_{\alpha\beta} &= \frac{\mu_{\alpha\beta}}{(\lambda + 2\mu)R_0} \left(\left\{ \alpha, \beta \right\} = \left\{ r, \theta, \theta \right\} \right), \quad \eta = \frac{\gamma}{(\lambda + 2\mu)R_0^2}, \quad \xi = \frac{\varepsilon}{(\lambda + 2\mu)R_0^2}, \\ \kappa &= \frac{\lambda}{\lambda + 2\mu}, \quad \tau = \frac{c_1 t}{R_0}, \quad c_1 = \sqrt{\frac{\lambda + 2\mu}{\rho}}, \quad c_2 = \sqrt{\frac{\mu}{\rho}}, \quad \gamma_m = \frac{c_1}{c_m} \quad (m = 1, 2), \end{aligned}$$

где c_1 и c_2 - скорости распространения волн растяжения-сжатия и формоизменения в классической упругой среде.

Представление решения в виде рядов

Для построения решения начально-краевой задачи (2) – (10) используем метод неполного разделения переменных, раскладывая искомные функции и правые части граничных условий (9) в ряды по многочленам Лежандра $P_n(\cos \theta)$ и Гегенбауэра $C_{n-1}^{3/2}(\cos \theta)$ [5]:

$$\begin{pmatrix} \varphi \\ w \\ \varepsilon_{rr} \\ \sigma_{rr} \end{pmatrix} = \sum_{n=0}^{\infty} \begin{pmatrix} \varphi_{n}(r,\tau) \\ w_{n}(r,\tau) \\ \varepsilon_{rm}(r,\tau) \\ \sigma_{rm}(r,\tau) \end{pmatrix} P_{n}(\cos\theta), \quad \begin{pmatrix} \psi \\ v \\ \omega \\ \varepsilon_{r\theta} \end{pmatrix} = -\sin\theta \sum_{n=1}^{\infty} \begin{pmatrix} \psi_{n}(r,\tau) \\ v_{n}(r,\tau) \\ \omega_{n}(r,\tau) \\ \varepsilon_{r\theta n}(r,\tau) \end{pmatrix} C_{n-1}^{3/2}(\cos\theta); \quad (11)$$

$$\begin{pmatrix} \varepsilon_{\theta\theta} \\ \varepsilon_{\theta\theta} \\ \varepsilon_{\theta\theta} \\ \chi_{\theta\theta} \\ \chi_{\theta\theta} \\ \chi_{\theta\theta} \end{pmatrix} = \sum_{n=0}^{\infty} \begin{pmatrix} \varepsilon_{\theta\theta n}(r,\tau) \\ \varepsilon_{\theta\theta n}(r,\tau) \\ \varepsilon_{\theta\theta n}(r,\tau) \\ \chi_{\theta\theta n}(r,\tau) \\ 0 \end{pmatrix} P_{n}(\cos\theta) + \frac{\cos\theta}{r} \sum_{n=1}^{\infty} \begin{pmatrix} v_{n}(r,\tau) \\ -v_{n}(r,\tau) \\ \omega_{n}(r,\tau) \\ r\chi_{\theta\theta n}(r,\tau) \end{pmatrix} C_{n-1}^{3/2}(\cos\theta). \quad (12)$$

Функции $w_0, \varepsilon_{\theta r}, \chi_{r9}, \chi_{9r}, \mu_{r9}, \mu_{gr}, \sigma_{r\theta}, \sigma_{\theta r}$ представляем аналогично (11), а функции $\sigma_{\theta \theta}, \sigma_{99}, \mu_{\theta 9}, \mu_{9\theta}$ - подобно (12) в виде рядов по полиномам Лежандра и Гегенбауэра соответственно.

Поставляя ряды (11) и (12) в (3), получаем следующие уравнения для коэффициентов рядов для потенциалов:

$$\ddot{\varphi}_n = \Delta_n \varphi_n \ \left(n \ge 0\right), \quad \ddot{\psi}_n = \frac{1-\kappa}{2} \Delta_n \psi_n - \frac{1}{4} \left(\eta + \xi\right) \Delta_n^2 \psi_n \ \left(n \ge 1\right); \quad \Delta_n = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} - \frac{n(n+1)}{r^2}. \tag{13}$$

Коэффициенты рядов для остальных компонент напряженно-деформированного состояния в соответствии с (2) и (4) – (8) определяются так:

$$w_n = \frac{\partial \varphi_n}{\partial r} - \frac{n(n+1)}{r} \psi_n, \quad v_n = \frac{\varphi_n - \psi_n}{r} - \frac{\partial \psi_n}{\partial r}, \quad \omega_n = \frac{1}{2} \left(\frac{v_n - w_n}{r} + \frac{\partial v_n}{\partial r} \right); \tag{14}$$

$$\varepsilon_{rm} = \frac{\partial w_n}{\partial r}, \quad \varepsilon_{\theta\theta n} = \frac{1}{r} \Big[w_n - n \big(n+1 \big) v_n \Big], \quad \varepsilon_{\theta\theta n} = \frac{w_n}{r}, \quad \varepsilon_{r\theta n} = \varepsilon_{\theta rn} = \frac{1}{2} \bigg(\frac{\partial v_n}{\partial r} + \frac{w_n - v_n}{r} \bigg); \tag{15}$$

$$\chi_{rg_n} = \frac{\partial \omega_n}{\partial r}, \quad \chi_{gg_n} = -n(n+1)\frac{\omega_n}{r}, \quad \chi_{gg_n} = -\chi_{gr_n} = \frac{\omega_n}{r};$$
(16)

$$\mu_{rg_n} = \xi_+ \frac{\partial \omega_n}{\partial r} - \xi_- \frac{\omega_n}{r}, \quad \mu_{gg_n} = -n(n+1)\xi_+ \frac{\omega_n}{r}, \quad \mu_{gr_n} = -\xi_+ \frac{\omega_n}{r} + \xi_- \frac{\partial \omega_n}{\partial r},$$

$$\mu_{gg_n}(r,\tau) = -n(n+1)\xi_- \frac{\omega_n}{r};$$
(17)

$$\sigma_{rrn} = \frac{\partial w_n}{\partial r} + \frac{\kappa}{r} \Big[2w_n - n(n+1)v_n \Big], \quad \sigma_{r\theta n} = \sigma_{r\theta ns} - \sigma_{r\theta n*}, \quad \sigma_{\theta rn} = \sigma_{r\theta ns} + \sigma_{r\theta n*},$$

$$\sigma_{r\theta ns} = \frac{1-\kappa}{2} \Big(\varepsilon_{r\theta n} + \varepsilon_{\theta rn} \Big), \quad \sigma_{r\theta n*} = \frac{1}{2} \Big(\frac{\partial \mu_{r\theta n}}{\partial r} + \frac{\mu_{\theta \theta n} + \mu_{\theta rn} + 2\mu_{r\theta n}}{r} \Big) + \eta \frac{\omega_n}{r^2},$$

$$\sigma_{\theta \theta n} = \kappa \frac{\partial \omega_n}{\partial r} + \frac{1}{r} \Big[(1+\kappa)\omega_n - n(n+1)v_n \Big], \quad \sigma_{\theta \theta n} = \kappa \frac{\partial \omega_n}{\partial r} + \frac{1}{r} \Big[(1+\kappa)\omega_n - n(n+1)\kappa v_n \Big].$$
(18)

Соответствующие начальные и граничные условия согласно (9) и (10) имеют вид:

$$w_n|_{r=1} = w_{0n}(\theta, \tau), \quad v_n|_{r=1} = 0, \quad \omega_n|_{r=1} = 0;$$
(19)

$$\varphi_n \big|_{\tau=0} = \psi_n \big|_{\tau=0} = \dot{\varphi}_n \big|_{\tau=0} = \dot{\psi}_n \big|_{\tau=0} \equiv 0.$$
⁽²⁰⁾

Определение коэффициентов рядов в пространстве преобразований Лапласа

К дифференциальным уравнениям (13) с учетом условий (19) применяем преобразование Лапласа по времени (*s* – параметр; индекс «*L*» обозначает трансформанту):

$$\frac{\partial^2 \varphi_n^L(r,s)}{\partial r^2} + \frac{2}{r} \frac{\partial \varphi_n^L(r,s)}{\partial r} - \left[\frac{n(n+1)}{r^2} + s^2\right] \varphi_n^L(r,s) = 0; \qquad (21)$$

$$(\eta + \xi) \Delta_n^2 \psi_n^L(r, s) - 2(1 - \kappa) \Delta_n \psi_n^L(r, s) + 4s^2 \psi_n^L(r, s) = 0.$$
⁽²²⁾

Общее решение уравнения (21) имеет вид:

$$\varphi_n^L(r,s) = r^{-1/2} \left[C_{n1}^{(1)}(s) K_{n+1/2}(rs) + C_{n2}^{(1)}(s) I_{n+1/2}(rs) \right],$$
(23)

где $C_{n1}^{(1)}$ и $C_{n2}^{(1)}$ - произвольные постоянные интегрирования; $I_{\nu}(z)$ и $K_{\nu}(z)$ модифицированные функции Бесселя порядка ν первого и второго рода соответственно [6].

Для решения уравнения (22) полагаем

$$\Delta_n \psi_n^L = \lambda \psi_n^L, \tag{24}$$

и получаем следующее характеристическое уравнение:

$$(\eta + \xi)\lambda^2 - 2(1-\kappa)\lambda + 4s^2 = 0.$$
⁽²⁵⁾

Его корни имеют вид:

$$\lambda_{1,2} = \frac{(1-\kappa) \pm \sqrt{(1-\kappa)^2 - 4s^2(\eta + \xi)}}{\eta + \xi}, \quad \text{Re}\,\sqrt{\Box} > 0.$$
(26)

Учитывая, что фундаментальная система решений уравнения (24) состоит из модифицированных функций Бесселя, находим общее решение уравнения (22):

$$\psi_{n}^{L}(r,s) = r^{-1/2} \sum_{j=1}^{2} \left[C_{nj}^{(2)}(s) K_{n+1/2}(r\sqrt{\lambda_{j}}) + C_{n,j+2}^{(2)}(s) I_{n+1/2}(r\sqrt{\lambda_{j}}) \right],$$
(27)

где $C_{nj}^{(2)}$ ($j = \overline{1, 4}$) - произвольные постоянные интегрирования.

Принимая во внимание свойства модифицированных функций Бесселя (в окрестности точки z = 0 функция $I_v(z)$ ограничена, а $K_v(z) \to \infty$ при $r \to 0$) и условие ограниченности решений, получаем, что $C_{n1}^{(1)}(s) = C_{n1}^{(2)}(s) = C_{n2}^{(2)}(s) \equiv 0$, т.е.

$$\varphi_n^L(r,s) = r^{-1/2} C_{n2}^{(1)}(s) I_{n+1/2}(rs), \quad \psi_n^L(r,s) = r^{-1/2} \sum_{j=1}^2 C_{n,j+2}^{(2)} I_{n+1/2}(r\sqrt{\lambda_j}).$$
(28)

Далее, используя связь модифицированных функций Бесселя полуцелого индекса с элементарными функциями (*n* = 0,1,2,...) [5]

$$I_{n+1/2}(z) = \frac{(-1)^n}{\sqrt{2\pi}z^{n+1/2}} \left[e^z R_{n0}(-z) - e^{-z} R_{n0}(z) \right], \quad R_{n0}(z) = \sum_{k=0}^n A_{nk} z^{n-k},$$

$$A_{nk} = \frac{(n+k)!}{(n-k)!k!2^k} \quad (0 \le k \le n), \quad A_{nk} = 0 \quad (k < 0, \quad k > n),$$
(29)

получаем следующие выражения для изображений коэффициентов потенциалов

$$\varphi_{n}^{L}(r,s) = \frac{A_{n}^{L}(s)}{r^{n+1}} \Big[R_{n0}(-rs)e^{rs} - R_{n0}(rs)e^{-rs} \Big],$$

$$\psi_{n}^{L}(r,s) = \frac{1}{r^{n+1}} \sum_{j=1}^{2} B_{nj}^{L}(s) \Big[R_{n0}(-r\sqrt{\lambda_{j}})e^{r\sqrt{\lambda_{j}}} - R_{n0}(r\sqrt{\lambda_{j}})e^{-r\sqrt{\lambda_{j}}} \Big],$$
(30)

где

$$A_n^L(s) = \frac{(-1)^n C_{n2}^{(1)}(s)}{\sqrt{2\pi} s^{n+1/2}}, \quad B_{nj}^L(s) = \frac{(-1)^n C_{n,j+2}^{(2)}(s)}{\sqrt{2\pi} \lambda_j^{n/2+1/4}} \quad (j = 1, 2).$$

Подстановка этих равенств в преобразованные по Лапласу формулы (14) приводит к следующим представлениям изображений коэффициентов рядов для перемещений и угла поворота:

$$w_{n}^{L}(r,s) = -\frac{1}{r^{n+2}} \left[e^{rs} A_{n}^{L}(s) P_{n1}(rs) + n(n+1) \sum_{j=1}^{2} e^{r\sqrt{\lambda_{j}}} B_{nj}^{L}(s) P_{n0}(r\sqrt{\lambda_{j}}) \right],$$

$$v_{n}^{L}(r,s) = \frac{1}{r^{n+2}} \left[e^{rs} A_{n}^{L}(s) P_{n0}(rs) + \sum_{j=1}^{2} e^{r\sqrt{\lambda_{j}}} B_{nj}^{L}(s) P_{n2}(r\sqrt{\lambda_{j}}) \right],$$

$$(31)$$

$$\omega_{n}^{L}(r,s) = -\frac{1}{2r^{n+3}} \sum_{j=1}^{2} e^{r\sqrt{\lambda_{j}}} B_{nj}^{L} P_{n3}(r\sqrt{\lambda_{j}}).$$

Здесь

$$P_{n0}(z) = R_{n0}(-z) - R_{n0}(z)e^{-2z}, \quad P_{n1}(z) = R_{n1}(-z) - R_{n1}(z)e^{-2z}, \quad P_{n2}(z) = R_{n3}(-z) - R_{n3}(z)e^{-2z}, \\ P_{n3}(z) = Q_{n}(-z) - Q_{n}(z)e^{-2z}, \quad R_{n1}(z) = R_{n+1,0}(z) - nR_{n0}(z), \quad R_{n3}(z) = R_{n+1,0}(z) - (n+1)R_{n0}(z), \\ Q_{n}(z) = R_{n+2,0}(z) - (2n+3)R_{n+1,0}(z), \quad R_{n1}(z) = \sum_{k=0}^{n+1} B_{nk}z^{n+1-k}, \quad R_{n3}(z) = \sum_{k=0}^{n+1} C_{nk}z^{n+1-k}, \\ Q_{n}(z) = \sum_{k=0}^{n+2} D_{nk}z^{n+2-k}, \quad B_{nk} = A_{n+1,k} - nA_{n,k-1}, \quad C_{nk} = A_{n+1,k} - (n+1)A_{n,k-1}, \quad D_{nk} = A_{n+2,k} - (2n+3)A_{n+1,k-1}. \\ (32)$$

Поставляя (31) в преобразованные по Лапласу граничные условия (19) и определяя постоянные интегрирования, получаем следующие выражения для изображений коэффициентов рядов для перемещений и угла поворота:

$$w_{n}^{L}(r,s) = \frac{w_{0n}^{L}(s)}{r^{n+2}} \bigg[W_{n0}^{L}(r,s) + n(n+1) \sum_{j=1}^{2} W_{nj}^{L}(r,s) \bigg],$$

$$v_{n}^{L}(r,s) = \frac{w_{n0}^{L}(s)}{r^{n+2}} \bigg[V_{n0}^{L}(r,s) + \sum_{j=1}^{2} V_{nj}^{L}(r,s) \bigg], \quad \omega_{n}^{L}(r,s) = \frac{w_{n0}^{L}(s)}{2r^{n+3}} \sum_{j=1}^{2} \Omega_{nj}^{L}(r,s).$$
(33)

Здесь

$$\begin{aligned} X_{n}(s)W_{n0}^{L}(r,s) &= \xi_{0}^{\frac{1-r}{2}}P_{n1}(rs)S_{n1}\left(\sqrt{\lambda_{1}},\sqrt{\lambda_{2}}\right), \quad X_{n}(s)W_{n1}^{L}(r,s) = -\xi_{1}^{\frac{1-r}{2}}P_{n0}\left(r\sqrt{\lambda_{1}}\right)S_{n2}\left(s,\sqrt{\lambda_{2}}\right), \\ X_{n}(s)V_{n0}^{L}(r,s) &= -\xi_{0}^{\frac{1-r}{2}}P_{n0}\left(rs\right)S_{n1}\left(\sqrt{\lambda_{1}},\sqrt{\lambda_{2}}\right), \quad X_{n}(s)V_{n1}^{L}(r,s) = \xi_{1}^{\frac{1-r}{2}}P_{n2}\left(r\sqrt{\lambda_{1}}\right)S_{n2}\left(s,\sqrt{\lambda_{2}}\right), \\ X_{n}(s)\Omega_{n1}^{L}(r,s) &= -\xi_{1}^{\frac{1-r}{2}}P_{n3}\left(r\sqrt{\lambda_{1}}\right)S_{n2}\left(s,\sqrt{\lambda_{2}}\right), \quad \xi_{0} = e^{-2s}, \quad \xi_{1} = e^{-2\sqrt{\lambda_{1}}}, \quad \xi_{2} = e^{-2\sqrt{\lambda_{2}}}, \\ X_{n}(s) &= P_{n1}(s)S_{n1}\left(\sqrt{\lambda_{1}},\sqrt{\lambda_{2}}\right) - n(n+1)P_{n0}(s)\left[S_{n2}\left(\sqrt{\lambda_{1}},\sqrt{\lambda_{2}}\right) - S_{n2}\left(\sqrt{\lambda_{2}},\sqrt{\lambda_{1}}\right)\right], \\ S_{n1}(x,y) &= P_{n2}(x)P_{n3}(y) - P_{n2}(y)P_{n3}(x), \quad S_{n2}(x,y) = P_{n0}(x)P_{n3}(y). \end{aligned}$$

Формулы для функций $W_{n2}^{L}(r,s)$, $V_{n2}^{L}(r,s)$ и $\Omega_{n2}^{L}(r,s)$ находятся из соответствующих равенств для $W_{n1}^{L}(r,s)$, $V_{n1}^{L}(r,s)$ и $\Omega_{n1}^{L}(r,s)$ с помощью умножения на (-1) и перемены местами λ_{1} и λ_{2} . Аналогичные (31) равенства могут быть получены и для остальных компонент напряженно-деформированного состояния.

Предельный переход к симметричной теории упругости

Для указанного перехода в полученных выше соотношениях необходимо перейти к пределу при $\eta \to 0$ и $\xi \to 0$. При этом для корней (26) характеристического уравнения имеют место следующие соотношения:

$$\lambda_1 \to \infty, \quad \lambda_2 \to \frac{2s^2}{(1-\kappa)} = (\gamma_2 s)^2.$$

Отсюда следует, что $\xi_1 \to 0$, $\xi_2 \to e^{-2\gamma_2 s}$. В результате для изображений коэффициентов рядов для перемещений получаем следующий результат:

$$w_{n}^{L}(r,s) = \frac{w_{0n}^{L}(s)}{r^{n+2}} \Big[e^{(r-1)s} W_{n0}^{L}(r,s) + n(n+1) e^{(r-1)\gamma_{2}s} W_{n2}^{L}(r,s) \Big],$$

$$v_{n}^{L}(r,s) = \frac{w_{n0}^{L}(s)}{r^{n+2}} \Big[e^{(r-1)s} V_{n0}^{L}(r,s) + e^{(r-1)\gamma_{2}s} V_{n2}^{L}(r,s) \Big], \quad \omega_{n}^{L}(r,s) = \frac{w_{n0}^{L}(s)}{2r^{n+3}} e^{(r-1)\gamma_{2}s} \Omega_{n2}^{L}(r,s)$$

где

$$\begin{aligned} X_{n0}(s)W_{n0}^{L}(r,s) &= P_{n1}(rs)P_{n2}(\gamma_{2}s), \quad X_{n0}(s)W_{n2}^{L}(r,s) = -P_{n0}(r\gamma_{2}s)P_{n0}(s), \\ X_{n0}(s)V_{n0}^{L}(r,s) &= -P_{n0}(rs)P_{n2}(\gamma_{2}s), \quad X_{n0}(s)V_{n2}^{L}(r,s) = P_{n2}(r\gamma_{2}s)P_{n0}(s), \\ X_{n0}(s)\Omega_{n2}^{L}(r,s) &= -P_{n3}(r\gamma_{2}s)P_{n0}(s), \quad X_{n0}(s) = P_{n1}(s)P_{n2}(\gamma_{2}s) - n(n+1)P_{n0}(s)P_{n0}(\gamma_{2}s). \end{aligned}$$

Приведенные результаты показывают, что при $\eta \to 0$ и $\xi \to 0$ изображения коэффициентов рядов по многочленам Лежандра и Гегенбауэра для перемещений и угла поворота имеют вид рациональных функций, которые соответствуют задаче классической теории упругости.

Определение оригиналов

Получить аналитические выражения для оригиналов функций $w_n^L(r,s)$, $v_n^L(r,s)$ и $\omega_n^L(r,s)$ затруднительно ввиду наличия в (31) слагаемых, содержащих радикалы $\sqrt{\lambda_{1,2}}$. Поэтому построим асимптотические представления искомых функций в начальные моменты времени, что соответствует разложению изображений в ряд по степеням $s^{-1/2}$ в окрестности бесконечно удаленной точки. Для корней $\sqrt{\lambda_{1,2}}$ согласно (26) эти ряды имеют следующий вид (*i* мнимая единица; черта – знак комплексного сопряжения):

$$\sqrt{\lambda_{1}} = \sqrt{s} \sum_{l=0}^{\infty} \beta_{l} s^{-l}, \quad \sqrt{\lambda_{2}} = \sqrt{s} \sum_{l=0}^{\infty} \overline{\beta}_{l} s^{-l}; \quad \beta_{0} = \alpha a_{0}, \quad \beta_{1} = \overline{\alpha} a_{1}, \quad \beta_{2} = \alpha a_{2}, \quad \alpha = 1+i,$$

$$a_{0} = \frac{1}{\left(\eta + \xi\right)^{1/4}}, \quad a_{1} = \frac{1-\kappa}{4\left(\eta + \xi\right)^{3/4}}, \quad a_{2} = -\frac{\left(1-\kappa\right)^{2}}{32\left(\eta + \xi\right)^{5/4}}.$$
(35)

Соответствующие ряды для экспонент, входящих в (31) - (33) и содержащих радикалы, получаем, используя известные ряды Маклорена:

$$e^{r\sqrt{\lambda_{1}}} = e^{r\beta_{0}\sqrt{s}} \sum_{k=0}^{\infty} A_{k} s^{-k/2}, \quad e^{r\sqrt{\lambda_{2}}} = e^{r\overline{\beta_{0}}\sqrt{s}} \sum_{k=0}^{\infty} \overline{A}_{k} s^{-k/2};$$

$$A_{0} = 1, \quad A_{1} = r\beta_{1}, \quad A_{2} = (r\beta_{1})^{2}/2, \quad A_{3} = r\beta_{2} + (r\beta_{1})^{3}/6, \quad A_{4} = r^{2}\beta_{1}\beta_{2} = 2r^{2}a_{1}a_{2}.$$
(36)

Перед разложением многочленов (32) с аналогичными аргументами, сначала с использованием (35) строим ряды для степеней радикалов (*k* = 0,1,2,...):

$$\left(\sqrt{\lambda_{1}}\right)^{k} = s^{k/2} \sum_{m=0}^{\infty} b_{km} s^{-m}, \quad \left(\sqrt{\lambda_{2}}\right)^{k} = s^{k/2} \sum_{m=0}^{\infty} \overline{b}_{km} s^{-m};$$

$$b_{k0} = \beta_{0}^{k}, \quad b_{k1} = k \beta_{1} \beta_{0}^{k-1}, \quad b_{k2} = k \beta_{0}^{k-1} \left[(k-1) \beta_{1} / 2 + \beta_{2} \right].$$
(37)

В результате приходим к следующим результатам:

$$R_{n0}\left(r\sqrt{\lambda_{1}}\right) = s^{n/2} \sum_{m=0}^{\infty} E_{nm}\left(r\right) s^{-m/2}, \quad R_{n0}\left(r\sqrt{\lambda_{2}}\right) = s^{n/2} \sum_{m=0}^{\infty} \overline{E}_{nm}\left(r\right) s^{-m/2}, R_{n1}\left(r\sqrt{\lambda_{1}}\right) = s^{(n+1)/2} \sum_{m=0}^{\infty} F_{nm}\left(r\right) s^{-m/2}, \quad R_{n1}\left(r\sqrt{\lambda_{2}}\right) = s^{(n+1)/2} \sum_{m=0}^{\infty} \overline{F}_{nm}\left(r\right) s^{-m/2}, R_{n3}\left(r\sqrt{\lambda_{1}}\right) = s^{(n+1)/2} \sum_{m=0}^{\infty} G_{nm}\left(r\right) s^{-m/2}, \quad R_{n3}\left(r\sqrt{\lambda_{2}}\right) = s^{(n+1)/2} \sum_{m=0}^{\infty} \overline{G}_{nm}\left(r\right) s^{-m/2}, Q_{n}\left(r\sqrt{\lambda_{1}}\right) = s^{(n+2)/2} \sum_{m=0}^{\infty} H_{nm}\left(r\right) s^{-m/2}, \quad Q_{n}\left(r\sqrt{\lambda_{2}}\right) = s^{(n+2)/2} \sum_{m=0}^{\infty} \overline{H}_{nm}\left(r\right) s^{-m/2},$$
(38)

где

$$E_{nm}(r) = \sum_{k=k_{nm}}^{[m/2]} A_{n,m-2k} r^{n+2k-m} b_{n+2k-m}, \quad F_{nm}(r) = \sum_{k=k_{n+1,m}}^{[m/2]} B_{n,m-2k} r^{n+1+2k-m} b_{n+1+2k-m},$$

$$G_{nm}(r) = \sum_{k=k_{n+1,m}}^{[m/2]} C_{n,m-2k} r^{n+1+2k-m} b_{n+1+2k-m}, \quad H_{nm}(r) = \sum_{k=k_{n+2,m}}^{[m/2]} D_{n,m-2k} r^{n+2+2k-m} b_{n+2+2k-m},$$

$$k_{nm} = \begin{cases} 0 & \text{при } m \le n, \\ (m-n)/2 & \text{при } m \le n. \end{cases}$$

Учитывая, что в некоторой полуплоскости $\operatorname{Re} s > \alpha_0$ имеют место неравенства $|\xi_1| < 1$ и $|\xi_2| < 1$, используем следующее разложение в степенной ряд [6]:

$$\left[X_{n}(s)\right]^{-1} = \sum_{K=0}^{\infty} \sum_{k_{0}+\ldots+k_{6}=K} \left(K;k_{0},\ldots,k_{6}\right) \frac{d_{0}^{k_{0}}\ldots d_{6}^{k_{6}}}{d^{K+1}} \xi_{0}^{k_{0}+k_{3}+k_{4}+k_{6}} \xi_{1}^{k_{1}+k_{3}+k_{5}+k_{6}} \xi_{2}^{k_{2}+k_{4}+k_{5}+k_{6}}$$
(39)

Здесь $(K;k_0,...,k_6)$ - мультииндекс, а величины d и d_j (j=0,1,...6) выражаются через определители третьего порядка:

$$\begin{aligned} d &= \Delta \left(-s, -\sqrt{\lambda_1}, -\sqrt{\lambda_2} \right), \ d_0 &= \Delta \left(s, -\sqrt{\lambda_1}, -\sqrt{\lambda_2} \right), \ d_1 &= \Delta \left(-s, \sqrt{\lambda_1}, -\sqrt{\lambda_2} \right), \ d_2 &= \Delta \left(-s, -\sqrt{\lambda_1}, \sqrt{\lambda_2} \right), \\ d_3 &= -\Delta \left(s, \sqrt{\lambda_1}, -\sqrt{\lambda_2} \right), \ d_4 &= -\Delta \left(s, -\sqrt{\lambda_1}, \sqrt{\lambda_2} \right), \ d_5 &= -\Delta \left(-s, \sqrt{\lambda_1}, \sqrt{\lambda_2} \right), \ d_6 &= \Delta \left(s, \sqrt{\lambda_1}, \sqrt{\lambda_2} \right), \\ \Delta \left(x, y, z \right) &= \begin{vmatrix} R_{n1} \left(x \right) & n \left(n+1 \right) R_{n0} \left(y \right) & n \left(n+1 \right) R_{n0} \left(z \right) \\ R_{n0} \left(x \right) & R_{n3} \left(y \right) & R_{n3} \left(z \right) \\ 0 & Q_n \left(y \right) & Q_n \left(z \right) \end{vmatrix}. \end{aligned}$$

Эти определители с использованием их свойств записываются так:

$$\Delta(x, y, z) = x^{2n+3} \sum_{j,k,l=0}^{\infty} \Delta_{jkl} x^{-(j+k/2+l/2)} = x^{2n+3} \sum_{m=0}^{\infty} d_{nm} x^{-m/2};$$

$$d_{nm} = \sum_{j=0}^{\lfloor m/2 \rfloor} \sum_{l=0}^{m-2j} \Delta_{j,m-2j-l,l}, \ \Delta_{jkl} = \begin{vmatrix} a_{11j} & a_{12k} & a_{13l} \\ a_{21j} & a_{22k} & a_{23l} \\ 0 & a_{32k} & a_{33l} \end{vmatrix},$$

где элементы a_{11j} , a_{12k} , a_{13l} , a_{21j} , a_{22k} , a_{23l} , a_{32k} , a_{33l} выражаются через коэффициенты многочленов $R_{n1}(x)$, $n(n+1)R_{n0}(y)$, $n(n+1)R_{n0}(z)$, $R_{n0}(x)$, $R_{n3}(y)$, $R_{n3}(z) Q_n(y)$ и $Q_n(z)$.

Далее, используя действия со степенными рядами, для степеней величины d и d_j получаем

$$d_i^{k_i} = s^{k_i(2n+3)} \sum_{m=0}^{\infty} \delta_{inm} s^{-m/2}, \quad d^{K+1} = s^{(K+1)(2n+3)} \sum_{m=0}^{\infty} \delta_{nm} s^{-m/2}, \quad \left(i = \overline{1,6}\right).$$
(40)

Поставляя (39) с учетом (40) в (34), находим изображения для коэффициентов рядов перемещений и угла поворота (для краткости выписываем формулы только для коэффициентов рядов нормального перемещения; остальные коэффициенты имеют аналогичный вид):

$$W_{n0}^{L}(r,s) = S_{n1}\left(\sqrt{\lambda_{1}},\sqrt{\lambda_{2}}\right)P_{n1}\left(rs\right)\sum_{K=0}^{\infty}\Pi\left(K;k_{0},k_{1}...,k_{6}\right)\xi_{0}^{H_{0}^{(w)}}\xi_{1}^{T_{0}^{(w)}}\xi_{2}^{T_{0}^{(w)}}\xi_{2}^{T_{0}^{(w)}},$$

$$W_{n1}^{L}(r,s) = -S_{n2}\left(s,\sqrt{\lambda_{2}}\right)P_{n0}\left(r\sqrt{\lambda_{1}}\right)\sum_{K=0}^{\infty}\Pi\left(K;k_{0},k_{1}...,k_{6}\right)\xi_{0}^{H_{1}^{(w)}}\xi_{1}^{T_{1}^{(w)}}\xi_{2}^{T_{1}^{(w)}}\xi_{2}^{T_{1}^{(w)}},$$
(41)

где

$$\begin{split} H_{0(k_{0}...k_{6})}^{(w)} &= k_{0} + k_{3} + k_{4} + k_{6} + (1-r)/2, \quad H_{1(k_{0}...k_{6})}^{(w)} = k_{0} + k_{3} + k_{4} + k_{6}, \\ T_{11(k_{0}...k_{6})}^{(w)} &= k_{1} + k_{3} + k_{5} + k_{6} + (1-r)/2, \quad T_{02(k_{0}...k_{6})}^{(w)} = T_{12(k_{0}...k_{6})}^{(w)} = k_{2} + k_{4} + k_{5} + k_{6}, \\ \Pi\left(K;k_{0},k_{1}...,k_{6}\right) &= \frac{1}{s^{2n+3}} \sum_{k_{0}+...+k_{6}=K} \sum_{m=0}^{\infty} \delta_{n(k_{0}...k_{6})m}s^{-m/2}, \quad T_{01(k_{0}...k_{6})}^{(w)} = k_{1} + k_{3} + k_{5} + k_{6}, \\ \sum_{m=0}^{\infty} \delta_{n(k_{0}...k_{6})m}s^{-m/2} &= \left(K;k_{0},...,k_{6}\right) \sum_{m=0}^{\infty} \delta_{0nm}s^{-m/2} \times ... \times \sum_{m=0}^{\infty} \delta_{6nm}s^{-m/2} / \sum_{m=0}^{\infty} \delta_{nm}s^{-m/2}. \end{split}$$

Используя (36) и (38), раскладываем в степенные ряды все остальные составляющие выражений (41):

$$S_{n1}\left(\sqrt{\lambda_{1}},\sqrt{\lambda_{2}}\right)P_{n1}\left(rs\right) = s^{(4n+5)/2}\sum_{i=0}^{7}\left[e^{-N_{0i}^{(w)}s}e^{-M_{0i}^{(w)}\sqrt{s}}\sum_{m=0}^{\infty}f_{imm}^{(w)}s^{-m/2}\right],$$

$$N_{01}^{(w)} = N_{03}^{(w)} = N_{05}^{(w)} = N_{07}^{(w)} = 2r, \quad N_{00}^{(w)} = N_{02}^{(w)} = N_{04}^{(w)} = N_{06}^{(w)} = 0,$$

$$M_{00}^{(w)} = M_{01}^{(w)} = 0, \quad M_{02}^{(w)} = M_{03}^{(w)} = 2\beta_{0}, \quad M_{04}^{(w)} = M_{05}^{(w)} = 2\overline{\beta_{0}}, \quad M_{06}^{(w)} = M_{07}^{(w)} = 2\left(\beta_{0} + \overline{\beta_{0}}\right);$$

$$\xi_{0}^{H_{0(k_{0}\dots k_{6})}}\xi_{1}^{T_{01(k_{0}\dots k_{6})}}\xi_{2}^{T_{02(k_{0}\dots k_{6})}} = e^{-2H_{0(k_{0}\dots k_{6})}^{(w)}s}e^{-2L_{0(k_{0}\dots k_{6})}^{(w)}\sqrt{s}}\sum_{m=0}^{\infty}c_{0(k_{0}\dots k_{6})m}s^{-m/2}, \quad L_{0(k_{0}\dots k_{6})}^{(w)} = T_{01(k_{0}\dots k_{6})}^{(w)}\beta_{0} + T_{02(k_{0}\dots k_{6})}^{(w)}\overline{\beta}_{0},$$

$$\sum_{m=0}^{\infty}c_{0(k_{0}\dots k_{6})m}s^{-m/2} = \left\{\sum_{m=0}^{\infty}A_{m}\left[-2T_{01(k_{0}\dots k_{6})}^{(w)}\right]s^{-m/2}\right\} \times \left\{\sum_{m=0}^{\infty}\overline{A}_{m}\left[-2T_{02(k_{0}\dots k_{6})}^{(w)}\right]s^{-m/2}\right\}.$$
(42)

$$S_{n2}\left(s,\sqrt{\lambda_{2}}\right)P_{n0}\left(r\sqrt{\lambda_{1}}\right) = s^{2n+1}\sum_{i=0}^{7} \left[e^{-N_{1i}^{(w)}s}e^{-M_{1i}^{(w)}\sqrt{s}}\sum_{m=0}^{\infty}g_{imm}^{(w)}s^{-m/2}\right],$$

$$N_{12}^{(w)} = N_{13}^{(w)} = N_{16}^{(w)} = N_{17}^{(w)} = 2, \quad N_{10}^{(w)} = N_{11}^{(w)} = N_{14}^{(w)} = N_{15}^{(w)} = 0,$$

$$M_{10}^{(w)} = M_{12}^{(w)} = 0, \quad M_{11}^{(w)} = M_{13}^{(w)} = 2r\beta_{0}, \quad M_{14}^{(w)} = M_{16}^{(w)} = 2\overline{\beta_{0}}, \quad M_{15}^{(w)} = M_{17}^{(w)} = 2\left(r\beta_{0} + \overline{\beta_{0}}\right);$$

$$\xi_{0}^{H_{1(k_{0}\dots k_{6})}}\xi_{1}^{T_{12(k_{0}\dots k_{6})}}\xi_{2}^{T_{12(k_{0}\dots k_{6})}} = e^{-2H_{1(k_{0}\dots k_{6})}^{(w)}s}e^{-2L_{1(k_{0}\dots k_{6})}^{(w)}\sqrt{s}}\sum_{m=0}^{\infty}c_{1(k_{0}\dots k_{6})m}^{(w)}s^{-m/2}, \quad L_{1(k_{0}\dots k_{6})}^{(w)}\beta_{0} + T_{12(k_{0}\dots k_{6})}^{(w)}\overline{\beta}_{0},$$

$$\sum_{m=0}^{\infty}c_{1(k_{0}\dots k_{6})m}^{(w)}s^{-m/2} = \left\{\sum_{m=0}^{\infty}A_{m}\left[-2T_{11(k_{0}\dots k_{6})}^{(w)}\right]s^{-m/2}\right\} \times \left\{\sum_{m=0}^{\infty}\overline{A}_{m}\left[-2T_{12(k_{0}\dots k_{6})}^{(w)}\right]s^{-m/2}\right\},$$
(43)

где коэффициенты $f_{inm}^{(w)}, g_{inm}^{(w)}$ выражаются через коэффициенты рядов (38) с помощью правил для произведения и сложения степенных рядов.

Поставляя (42) и (43) в (41), окончательно получаем

$$W_{n0}^{L}(r,s) = s^{-1/2} \sum_{i=0}^{7} \sum_{K=0}^{\infty} \sum_{k_{0}+\ldots+k_{6}=K} e^{-\lambda_{0i(k_{0}\ldots k_{6})}^{(w)}s} e^{-\kappa_{0i(k_{0}\ldots k_{6})}^{(w)}\sqrt{s}} \sum_{m=0}^{\infty} w_{n0i(k_{0}\ldots k_{6})m}(r) s^{-m/2},$$

$$W_{n1}^{L}(r,s) = s^{-2} \sum_{i=0}^{7} \sum_{K=0}^{\infty} \sum_{k_{0}\ldots+k_{6}=K} e^{-\lambda_{1i(k_{0}\ldots k_{6})}^{(w)}s} e^{-\kappa_{1i(k_{0}\ldots k_{6})}^{(w)}\sqrt{s}} \sum_{m=0}^{\infty} w_{n1i(k_{0}\ldots k_{6})m}(r) s^{-m/2},$$
(44)

где

$$\begin{split} &\sum_{m=0}^{\infty} w_{n0i(k_0\dots k_6)m} \left(r\right) s^{-m/2} = \sum_{m=0}^{\infty} \delta_{n(k_0\dots k_6)m} s^{-m/2} \times \sum_{m=0}^{\infty} c_{0(k_0\dots k_6)m}^{(w)} s^{-m/2} \times \sum_{m=0}^{\infty} f_{inm}^{(w)} s^{-m/2}, \\ &\lambda_{0i(k_0\dots k_6)}^{(w)} = N_{0i}^{(w)} + 2H_{0(k_0\dots k_6)}^{(w)}, \quad \kappa_{0i(k_0\dots k_6)}^{(w)} = M_{0i}^{(w)} + 2L_{0(k_0\dots k_6)}^{(w)}; \\ &\sum_{m=0}^{\infty} w_{n1i(k_0\dots k_6)m} \left(r\right) s^{-m/2} = \sum_{m=0}^{\infty} \delta_{n(k_0\dots k_6)m} s^{-m/2} \times \sum_{m=0}^{\infty} c_{1(k_0\dots k_6)m}^{(w)} s^{-m/2} \times \sum_{m=0}^{\infty} g_{inm}^{(w)} s^{-m/2}, \\ &\lambda_{1i(k_0\dots k_6)}^{(w)} = N_{1i}^{(w)} + 2H_{1(k_0\dots k_6)}^{(w)}, \quad \kappa_{1i(k_0\dots k_6)}^{(w)} = M_{1i}^{(w)} + 2L_{1(k_0\dots k_6)}^{(w)}. \end{split}$$

Аналогично можно представить изображения коэффициентов рядов для касательных перемещений и угла поворота в виде:

$$V_{n0}^{L}(r,s) = s^{-3/2} \sum_{i=0}^{7} \sum_{K=0}^{\infty} \sum_{k_{0}+\ldots+k_{6}=K} e^{-\lambda_{0i(k_{0}\ldots k_{6})}^{(v)}s} e^{-\kappa_{0i(k_{0}\ldots k_{6})}^{(v)}\sqrt{s}} \sum_{m=0}^{\infty} v_{n0i(k_{0}\ldots k_{6})m} s^{-m/2},$$

$$V_{n1}^{L}(r,s) = s^{-3/2} \sum_{i=0}^{7} \sum_{K=0}^{\infty} \sum_{k_{0}+\ldots+k_{6}=K} e^{-\lambda_{1i(k_{0}\ldots k_{6})}^{(v)}s} e^{-\kappa_{1i(k_{0}\ldots k_{6})}^{(v)}\sqrt{s}} \sum_{m=0}^{\infty} v_{n1i(k_{0}\ldots k_{6})m} s^{-m/2};$$
(45)

$$\Omega_{n1}^{L}(r,s) = s^{-1} \sum_{i=0}^{7} \sum_{K=0}^{\infty} \sum_{k_{0}+\ldots+k_{6}=K} e^{-\lambda_{1i(k_{0}\ldots k_{6})}^{(\omega)}s} e^{-\kappa_{1i(k_{0}\ldots k_{6})}^{(\omega)}\sqrt{s}} \sum_{m=0}^{\infty} \omega_{n1i(k_{0}\ldots k_{6})m} s^{-m/2}.$$
(46)

Оригиналы коэффициентов рядов для перемещений и угла поворота (44) – (46) находятся с помощью теорем операционного исчисления и следующих табличных соотношений [5,6] с учетом сдвигов коэффициентов:

$$e^{-\lambda s}e^{-a\sqrt{s}}s^{-m/2} \doteq \frac{(\tau-\lambda)_{+}^{m/2-1}}{\sqrt{2^{1-m}\pi}}e^{-\frac{a^{2}}{8(\tau-\lambda)}}D_{1-m}\left[\frac{a}{\sqrt{2(\tau-\lambda)}}\right] \quad (m=0,1,2...;\operatorname{Re} a \ge 0)$$

где $D_{\nu}(x)$ - функция параболического цилиндра; $x_{+}^{\alpha} = x^{\alpha}H(x)$; H(x) - функция Хевисайда.

Отметим, что функция параболического цилиндра обладает свойством $D_{\nu}(\overline{z}) = \overline{D_{\nu}(z)}$, из которого, а также из равенств (33) следует, что оригиналы искомых функций являются действительными.

Пример расчетов

В качестве материала, заполняющего пространство рассмотрим зернистый композит из алюминиевой дроби в эпоксидной матрице ($\lambda = 7.59\Gamma\Pi a$, $\mu = 1.89\Gamma\Pi a$, $\gamma + \varepsilon = 2.64\kappa H$) [7], что соответствует безразмерным параметрам $\kappa = 0.67$, $\eta + \xi = 0.00232$. Положим, что на границе полости заданы перемещения следующего вида:

$$w_0(\theta,\tau) = \frac{1}{2} (1 + \cos 2\theta) H(\tau).$$

При этом

$$w_{00}^{L}(s) = \frac{1}{3s}, \quad w_{20}^{L}(s) = \frac{2}{3s}, \quad w_{n0}^{L}(s) \equiv 0 \quad (n = 1, n \ge 3),$$

и в рядах (11) – (12) отличны от нуля только члены с индексами n = 0 и n = 2.

В результате получаем

$$w(r,\theta,\tau) = w_0(r,\tau)P_0(\cos\theta) + w_2(r,\tau)P_2(\cos\theta),$$

$$v(r,\theta,\tau) = -v_2(r,\tau)C_1^{3/2}(\cos\theta)\sin\theta, \quad \omega(r,\theta,\tau) = -\omega_2(r,\tau)C_1^{3/2}(\cos\theta)\sin\theta.$$

Здесь

$$w_0(r,\tau) = \sum_{i=0}^{7} \sum_{K=0}^{\infty} \sum_{k_0+\ldots+k_6=K} \left(K;k_0,k_1,\ldots,k_6\right) \sum_{m=0}^{\infty} w_{00i(k_0\ldots k_6)m}(r) h_{00i(k_0\ldots k_6)m}^{(w)}(r,\tau),$$

$$w_{2}(r,\tau) = \sum_{i=0}^{7} \sum_{K=0}^{\infty} \sum_{k_{0}+...+k_{6}=K} \left(K;k_{0},k_{1},...,k_{6}\right) \sum_{m=0}^{\infty} w_{20i(k_{0}...k_{6})m}\left(r\right) h_{20i(k_{0}...k_{6})m}^{(w)}\left(r,\tau\right) + \sum_{j=1}^{2} \left[\sum_{i=0}^{7} \sum_{K=0}^{\infty} \sum_{k_{0}+...+k_{6}=K} \left(K;k_{0},k_{1},...,k_{6}\right) \sum_{m=0}^{\infty} w_{2ji(k_{0}...k_{6})m}\left(r\right) h_{2ji(k_{0}...k_{6})m}^{(w)}\left(r,\tau\right)\right];$$

$$v_{2}(r,\tau) = \sum_{i=0}^{7} \sum_{K=0}^{\infty} \sum_{k_{0}+\ldots+k_{6}=K} \left(K;k_{0},k_{1},\ldots,k_{6}\right) \sum_{m=0}^{\infty} v_{20i(k_{0}\ldots k_{6})m} h_{20i(k_{0}\ldots k_{6})m}^{(\nu)}\left(r,\tau\right) + \sum_{j=1}^{2} \left[\sum_{i=0}^{7} \sum_{K=0}^{\infty} \sum_{k_{0}+\ldots+k_{6}=K} \left(K;k_{0},k_{1},\ldots,k_{6}\right) \sum_{m=0}^{\infty} v_{2ji(k_{0}\ldots k_{6})m} h_{2ji(k_{0}\ldots k_{6})m}^{(\nu)}\left(r,\tau\right)\right];$$

$$\omega_{2}(r,\tau) = \sum_{j=1}^{2} \left[\sum_{i=0}^{7} \sum_{K=0}^{\infty} \sum_{k_{0}+\ldots+k_{6}=K} \left(K; k_{0}, k_{1}, \ldots, k_{6} \right) \sum_{m=0}^{\infty} \omega_{2\,ji(k_{0}\ldots k_{6})m} h_{2\,ji(k_{0}\ldots k_{6})m}^{(\omega)} \left(r, \tau \right) \right],$$

где

$$h_{00i(k_{0}...k_{6})m}^{(w)}(r,\tau) = f_{0}^{(w)}(m+3)/3r^{2}, \quad h_{20i(k_{0}...k_{6})m}^{(w)}(r,\tau) = 2f_{0}^{(w)}(m+3)/3r^{4},$$

$$h_{2ji(k_{0}...k_{6})m}^{(w)}(r,\tau) = 4f_{j}^{(w)}(m+6)/r^{4}, \quad h_{2ji(k_{0}...k_{6})m}^{(\omega)}(r,\tau) = f_{j}^{(\omega)}(m+4)/3r^{5}, \quad j = (1,2);$$

$$h_{2li(k_{0}...k_{6})m}^{(v)} = 2f_{l}^{(v)}(m+5)/3r^{4}, \quad l = (0,1,2);$$

$$f_{l}^{(\alpha)}(m) = \frac{\left[\tau - \lambda_{li(k_{0}...k_{6})}^{(\alpha)}\right]_{+}^{m/2-1}}{\sqrt{2^{1-m}\pi}} e^{-\frac{\left[\frac{\kappa_{li(k_{0}...k_{6})}^{(\alpha)}}{8\left[\tau - \lambda_{li(k_{0}...k_{6})}^{(\alpha)}\right]}\right]}} D_{1-m} \left\{\frac{\kappa_{li(k_{0}...k_{6})}^{(\alpha)}}{\sqrt{2\left[\tau - \lambda_{li(k_{0}...k_{6})}^{(\alpha)}\right]}}\right\}, \quad \alpha = (w, v, \omega).$$

Графики нормального w, тангенциального v перемещений и угла поворота ω в зависимости от времени на расстоянии r = 0.99; 0.95; 0.92; 0.88 от центра шара при $\theta = \pi/4$ и K = 1 приведены соответственно на рис. 1 – 3. Они соответствуют четырем членам степенных рядов (47). При разных значениях K или учете еще одного члена степенных рядов графики совпадают.

Рис. 1. Изменение радиального перемещения по времени

Рис. 2. Изменение тангенциального перемещения по времени

Рис. 3. Изменение угла поворота по времени

Библиографический список

Cosserat E., Cosserat F. Theorie des corps deformables. – Paris: Librairie Scientifique
 A. Hermann et Fils, 1909. – 226 p.

2. *Аэро Э.Л., Кувшинский Е.В.* Основные уравнения теории упругости сред с вращательным взаимодействием частиц. Физика твердого тела, 1960. Т.2. №7. С. 1399 – 1409.

3. *Новацкий В.* Теория упругости. М.: Мир, 1975. – 872с.

4. *Миндлин Р.Д., Тирстен Г.Ф.* Эффекты моментных напряжений в линейной теории упругости. Механика. Сб. Пер, 1964. №4. С.163 – 176.

5. *Горшков А.Г., Медведский А.Л., Рабинский Л.Н., Тарлаковский Д.В.* Волны в сплошных средах. М.: Физматлит, 2004. – 472с.

6. *Абрамовица М., Стиган И*. Справочник по специальным функциям с формулами, графиками и математическими таблицами. М.: Наука, 1979. – 625с. и 832с.

7. *Ерофеев В.И.* Волновые прцессы в твердых телах с микроструктурой. М.: Издательство Московского университета, 1999. – 328с.

Сведения о авторах

Лай Тхань Туан, аспирант Московского авиационного института (национального исследовательского университета), тел.:(962)9254399, email: <u>thanhtuan711@yahoo.com</u>

Тарлаковский Дмитрий Валентинович, профессор Московского авиационного института (национального исследовательского университета), д.ф.-м.н., тел.:(499)1584306, тел.:(903)7660347, e-mail: <u>tvd902@mai.ru</u>