УДК 533.9.

Определение концентраций возбужденных состояний и вероятностей радиационных переходов XeI плазмы холловских двигателей

Криворучко Д.Д.^{1*}, Скрылев А.В.¹, Скороход Е.П.^{2**}

¹Московский физико-технический институт, Институтский пер.9, Долгопрудный, Московская область, 141701, Россия.

²Московский авиационный институт (национальный исследовательский университет), МАИ, Волоколамское шоссе, 4, Москва, А-80, ГСП-3, 125993, Россия

> *e-mail: <u>daria.krivoruchko@phystech.edu</u> **e-mail: e.p.skorohod@mail.ru

Аннотация

Исследуется низкотемпературная плазма ксенона Холловского двигателя. Эксперименты проводились в горизонтально расположенной цилиндрической вакуумной камере диаметром 1,8 м. и длиной 4,5 м., оптические измерения — в диапазоне от 250 нм до 1100 нм.

В кулоновском приближении рассчитаны вероятности радиационных переходов (коэффициенты Эйнштейна) для спонтанного излучения атома ксенона (~800 переходов). По линиям спектра с использованием рассчитанных вероятностей фото-переходов определены заселённости атома Хе для четырёх разных случаев положения щели. "Рой-образный" характер распределения заселённостей возбуждённых состояний сохраняется во всех

четырёх случаях, причём относительное расположение значений концентраций в зависимости от энергии возбуждения уровня ("штрих-код") не меняется.

Ключевые слова: плазма ксенона, вероятности фотопереходов (коэффициенты Эйнштейна) Хе I, концентрации возбуждённых состояний плазмы Холловского двигателя.

Введение

Данная работа возникла как результат совместных обсуждений по спектроскопической диагностике неравновесной низкотемпературной плазмы ксенона.

Спектроскопические методы наиболее хорошо разработаны для плазмы, находящейся в локальном термодинамическом равновесии (ЛТР) [1, 2], когда предполагается, что распределение электронов по энергиям, соответствующее распределению Максвелла, устанавливается практически мгновенно; а распределение частиц по возбуждённым уровням соответствует статистике Больцмана

$$\frac{N_i^{+(m-1)}}{N^{+(m-1)}} = \frac{g_i^{(m-1)}}{Z^{(m-1)}} \exp(-\frac{E_i}{kT_e}), \qquad (1)$$

где $N_i^{+(m-1)}$ - заселенность *i* - го возбужденного состояния частиц, (m-1) – ой кратности ионизации (m = 1 для атома), $g_i^{(m-1)}$ - статистический вес *i* –го возбужденного состояния, E_i - энергия этого состояния, $Z^{(m-1)}$ - статистическая сумма по состояниям частиц. В случае ЛТР концентрации

возбуждённых состояний (в десятичном логарифмическом масштабе) в зависимости от их энергии возбуждения есть прямая линия.

Для термической ионизации верна формула Саха

$$\frac{N_e N^{+m}}{N^{+(m-1)}} = 2 \frac{Z^m}{Z^{(m-1)}} \left(\frac{mkT_e}{2\pi\hbar^2}\right)^{3/2} \exp\left(-\frac{I^{(m-1)} - \Delta I^{(m-1)}}{kT_e}\right).$$
(2)

Здесь N_e -концентрация электронов, $I^{(m-1)}$ – энергия ионизации, $\Delta I^{(m-1)}$ снижение энергии ионизации.

В диагностике неравновесной квазистационарной плазмы, как правило, возникают трудности - это: неоднозначность геометрии плазменного объекта по его термодинамическим и оптическим параметрам; не больцмановский характер распределений заселённостей возбуждённых состояний (PBC) и особенности двухтемпературной плазмы, например, случай метаравновесной плазмы инертных газов [3-5, 7,8].

Для большинства используемых плазменных источников диагностика исследуемой плазмы, разработанная в рамках модели ЛТР, не претерпела особых изменений. Это, в какой-то мере, относится и к исследованиям плазмы Холловского двигателя (ХД), интенсивно проводимых в 70-ых годах прошлого века.

Наряду с этим, например, [6], для разреженной плазмы ХД рассматривалась корональная модель, в рамках которой (как подчёркивают авторы [6]) "существует равновесие между ударным возбуждением и спонтанным девозбуждением". Заметим, что это утверждение претерпело некоторые изменения, например, [3,7,8].

Расчёты многоуровневой кинетики ксенона [3,7] показали, что при концентрациях электронов $N_e \sim 10^{16}$ см⁻³ (рис.1а) выполняется модель ЛТР и РВС прямая линия.

Рис.1 Распределения возбуждённых состояний XeI [7].

В случае, когда $N_e \sim 10^{14}$ см⁻³, (рис.1б) РВС носит характер ломанных линий. При концентрациях электронов $\sim 10^{11} - 10^{12}$ см⁻³ (рис.1в) заселённости, РВС представляют собой "рой" точек, значения которых лежат в пределах нескольких порядков. Температура электронов задавалась $T_e = 0.8$ эВ для

разных значений концентраций электронов *N_e* (см⁻³) и плотности ядер *NO* (см⁻³), указанных под графиком.

Таким образом, для разреженной плазмы представления PBC в виде отдельных точек, соединённых отрезками прямых разных наклонов, как желание видеть больцмановскую прямую, ошибочно.

Постановка задачи.

Рассчитать вероятности фото-переходов одинаковым способом для всех обрабатываемых линий.

Из полученных спектров (экспериментальных значений интенсивностей линий) найти (с точностью вычисленных вероятностей) концентрации возбуждённых состояний (заселённости), используя выражение для интенсивности спектральной линии

$$I_{\lambda} = \frac{hc}{4\pi n\lambda} N_i A_{ij} \varphi(\lambda), \qquad (3)$$

где N_i – концентрация верхнего состояния, A_{ij} – вероятность фотоперехода (коэффициент Эйнштейна), h – постоянная Планка, $\varphi(\lambda)$ – спектральный контур линии.

Построить PBC, аналогичные (рис.1в), для спектров снятых из разных областей. Убедиться, что их характер не меняется. Используя те же самые коэффициенты Эйнштейна, в рамках многоуровневой кинетики рассчитать заселённости тех же фото-переходов. В результате расчётов многоуровневой кинетики добиться совпадения теоретически полученными PBC с экспериментальными и тем самым, "узнать" (подтвердить правильность нами

задаваемых параметров): концентрацию электронов и их температуру, плотность ядер и их температуру.

Иными словами, будем полагать, что подобно тому как в атомной физике для каждого атома существует своя схема уровней (Гротриана), соответствующая длинам волн линейчатого спектра, так и всякая плазма имеет свой "штрих-код" в виде PBC, получаемых из спектров.

1. Расчёты вероятностей радиационных переходов атома ксенона

Одной из характеристик возбуждённых состояний атома являются вероятности радиационных переходов или коэффициенты Эйнштейна для спонтанного излучения

$$A_{ki} = \frac{g_i}{g_k} \left(\frac{1}{137}\right)^3 \frac{e^2}{2a_0} \left(\frac{\Delta E}{Ry}\right)^2 f_{ik} = 0.829 \cdot 10^{10} \frac{g_i}{g_k} \left(\frac{\Delta E}{Ry}\right)^2 f_{ik} \,. \tag{4}$$

Сила осциллятора в поглощении f_{ik} перехода i-k равна

$$f_{ik} = \frac{Q}{2\ell_i + 1} F(\ell_i, \ell_k), \tag{5}$$

где $F(\ell_i, \ell_k)$ - величина, заданная как функция орбитальных моментов оптического электрона в начальном и конечном состояниях и эффективных главных квантовых чисел уровней (не конфигурации в целом) n_i^* и n_k^* . При вычислении $F(\ell_i, \ell_k)$ использовались атомные функции кулоновского приближения [9]. Q-фактор отражает угловую зависимость матричного элемента [10]. В табл. 1 представлены результаты расчёта [10] сил осцилляторов f_{ik} в поглощении дипольных переходов согласно (4),(5) в порядке возрастания длин волн λ_{ik} , а также расчёты вероятностей фотопереходов [10]. Проводится сравнение с данными других авторов [11-18].

Таблица 1

Расчёты силы осцилляторов f_{ik} и вероятностей переходов A_{ki} Xe I.

Сравнение с данными других авторов:

переход	λ, нм	$f_{ m ik}$	$A_{ki}, 10^{6}c^{-1}$	$A_{ki}, 10^6 c^{-1}$	Промежут	очный тип
		[10],	[10]	другие	связи	[14, 15]
		другие		авторы	f.,	$\Delta_{11} = 10^{6} c^{-1}$
		авторы			J_{1K}	A_{k1} , 10 C
6s[3/2]27p[1/2]0	459.12					0,31(+2)
6s[3/2]27p[3/2]1	461.19	0,17(-2)	0,89(+0)		0,774(-3)	0,239(+2)
					0,341(-3)	
6s[3/2]27p[3/2]2	462.43	0,15(-1)	0,47(+1)		0,16(-1)	0,107(+2)
		0,1(-1)G			0,508(-2)	0,972(+1)
6s[3/2]27p[5/2]3	467.12	0,14(-1)	0,3(+1)		0,169(-1)	
		0,1(-1)G			0,753(-2)	0,392(+2)
6s[3/2]27p[5/2]2	469.7	0,3(-2)	0,9(+0)		0,408(-2)	0,297(+2)
		0,3(-2)G			0,157(-2)	
6s[3/2]27p[1/2]1	479.26	0,17(-2)	0,82(+0)		0,398(-3)	0,184(+1)
					0,168(-3)	0,23(+1)
6s[3/2]17p[1/2]0	480.7	0,56(-2)	0,48(+1)		0,591(-2)	
		0,5(-2)G			0,427(-2)	
6s[3/2]17p[3/2]1	482.97	0,11(-1)	0,32(+1)		0,453(-2)	0,249(+2)
		0,4(-2)G			0,412(-2)	0,224(+2)
6s[3/2]17p[3/2]2	484.33	0,22(-2)	0,37(+0)		0,439(-2)	
		0,4(-2)G			0,349(-2)	
6s[3/2]17p[5/2]3	489.48					
6s[3/2]17p[5/2]2	492.32	0,1(-1)	0,16(+1)		0,354(-2)	0,192(+0)
		0,42(-2)G			0,505(-2)	0,815(-1)
6s[3/2]17p[1/2]1	502.83	0,77(-2)	0,2(+1)			0,123(+1)
6s[3/2]26p[1/2]0	765.99					0,475(+0)
6p[1/2]16d[3/2]1	783.3	0,19(-2)	0,21(+0)		0,85(-4)	0,369(+1)
-					0,345(-3)	0,164(+1)
6p[1/2]16d[5/2]3	815.08					0,498(+1)
6s[3/2]26p[3/2]2	823.16	0,315(+0)	0,31(+2)	0,38(+1) A	0,253(+0)	0,158(+1)
		0,24(+0)G		0,98±0,1(+0) B	0,227(+0)	0,404(+0)
				0,23(+2) C		0,178(+0)
				0,42(+2) D		
6s[3/2]16p[1/2]0	828.01	0,12(+0)	0,35(+2)	0,1(+2) A	0,153(+0)	0,261(+1)
		0,12(+0)G		>0,3(+1) B	0,103(+0)	0,137(+1)

A – [11], B – [12], C – [13], D – [14], G – [18].

		1		0,36(+2) C		0,196(+2)
				0,55(+2) D		0,174(+2)
6p[1/2]16d[5/2]2	834.9				0,242(-2)	
					0,345(-2)	0,316(+2)
6p[5/2]26d[3/2]1	839.23	0,6(-3)	0,94(-1)		0,212(-2)	0,263(+2)
					0,259(-2)	0,106(+2)
6s[3/2]26p[3/2]1	840.92	0,35(-1)	0,55(+1)	0,83(+0) A	0,117(-1)	0,942(+1)
		0,13(-1)G		$0,99\pm0,05(+0)$	0,146(-1)	0,445(+2)
				B		0.201(+2)
				0,21(+1) C		0,301(+2)
$6\pi[1/2]1 = 6d[7/2]2$	950 <i>4</i> 1			0,4(+1) D		
6p[1/2]1 - 6d[7/2]3	858.68					
6p[1/2]10u[7/2]4	850.68					0.585(+0)
6p[3/2]30u[3/2]1	873.04	0.00(1)	0.52(+1)		0.085(1)	0,383(+0)
0p[1/2]1 - 0u[3/2]2	873.94	0,99(-1)	0,32(+1)		0,983(-1)	0,834(+0)
6p[5/2]2 6d[5/2]3	875 82	0.13(2)	0.8(1)		0,96(-1)	$0.748(\pm 0)$
op[5/2]20u[5/2]5	075.02	0,13(-2)	0,8(-1)		0,90(-2) 0.125(-1)	0,748(+0) 0,595(±0)
6s[3/2]26n[5/2]3	881 94	$0.485(\pm 0)$	0.3(+2)	$0.75\pm0.05(\pm0)$	0,123(-1) 0.641(+0)	0,373(+0)
03[3/2]2 0p[3/2]3	001.94	0,405(10)	0,5(+2)	B	0,041(10)	0,127(+1)
		0,55(+0)G		0,3(+2) C	0,485(+0)	0,118(+1)
				0,477(+2) D		0,512(+1)
6p[1/2]16d[1/2]1	886.23	0,91(-1)	0,77(+1)		0,113(+0)	0,369(+1)
-					0,134(+0)	0,232(+0)
6p[1/2]16d[1/2]0	890.87	0,478(-1)	0,12(+2)		0,579(-1)	0,436(+0)
					0,582(-1)	0,279(+0)
6s[3/2]16p[3/2]2	895.22	0,588(-1)	0,29(+1)	0,11(+2) C	0,213(+0)	0,45(+0)
		0,2(+0)G		0,129(+2) D	0,189(+0)	
6p[5/2]36d[5/2]3	898.1	0,217(-1)	0,18(+1)		0,224(-1)	0,287(+0)
					0,257(-1)	0,61(+0)
6p[5/2]26d[5/2]2	898.75	0,284(-1)	0,23(+1)		0,512(-1)	
					0,554(-1)	0,526(-1)
6p[3/2]16d[3/2]1	902.59	0,166(-1)	0,14(+1)		0,573(-1)	0,25(-1)
					0,502(-1)	
6s[3/2]26p[5/2]2	904.54	0,102(+0)	0,83(+1)	$0,85\pm0,05(+0)$	0,132(+0)	0,396(-1)
		0.12(10)G		B	$0.110(\pm 0)$	0.284(1)
		0,12(+0)0		$0,1(\pm 2) C$ 0.13(± 2) D	0,119(+0)	0,234(-1) $0.454(\pm 1)$
6s[3/2]16n[3/2]1	916.26	$0.292(\pm 0)$	$0.23(\pm 2)$	0.13(+2) D	$0.398(\pm 0)$	0,434(+1)
03[5/2]10p[5/2]1	710.20	0,252(10) 0.36(+0)G	0,23(+2)	0,23(+2) C 0.369(+2) D	0,331(+0)	0,414(+1) 0,543(+0)
6p[5/2]26d[7/2]3	916 75	0.174(+0)	0.98(+1)	0,309(12)12	0,331(+0) 0.198(+0)	0.524(+0)
op[0/2]2 ou[//2]0	210.75	0,171(10)	0,50(11)		0.2(+0)	0.146(+2)
6p[5/2]36d[5/2]2	922.24	0.16(-2)	0.17(+0)		0.226(-2)	0.147(+2)
Tro In The I		-, - ()	- , ,		0,235(-2)	0,11(+2)
6p[3/2]26d[3/2]1	923.99	0,22(-2)	0,29(+0)		0,116(-6)	0,113(+2)
Trol otrol		-, ()			0,229(-4)	0,516(+1)
6p[5/2]26d[7/2]4	926.37				· 、 、 /	0,518(+1)
6p[5/2]36d[7/2]3	941.2	0,68(-2)	0,51(+0)		0,357(-1)	
					0,332(-1)	
6p[5/2]26d[3/2]2	944.15	0,6(-3)	0,45(-1)		0,425(-2)	0,139(+0)
					0,493(-2)	0,198(+0)
6p[3/2]16d[5/2]3	945.05					
6p[5/2]36d[7/2]4	951.34	0,204(+0)	0,12(+2)		0,285(+0)	0,923(-2)
					0,257(+0)	0,375(-1)
6p[5/2]26d[1/2]1	958.51				0,721(-2)	
					0,719(-2)	0,765(-2)

6p[5/2]26d[1/2]0	963.94				1	0,846(-1)
6s[3/2]16p[5/2]3	965.18					
6p[3/2]26d[5/2]3	968.53	0,993(-1)	0,5(+1)		0,195(+0)	0,153(-1)
					0,182(+0)	0,194(-2)
6p[5/2]36d[3/2]2	970.1	0,6(-2)	0,59(+0)		0,981(-2)	0,737(+0)
					0,577(-2)	0,766(+0)
6p[3/2]16d[5/2]2	971.81	0,14(+0)	0,59(+1)		0,2(+0)	0,742(+0)
					0,187(+0)	0,529(+0)
6s[3/2]26p[1/2]1	979.97	0,16(+0)	0,18(+2)	$0,47\pm0,05(+0)$	0,268(+0)	0,192(+0)
		$0.24(\pm 0)G$		$B = 0.21(\pm 2) C$	$0.207(\pm 0)$	$0.129(\pm 0)$
		0,24(10)0		0,21(+2) C 0.322(+2) D	0,207(10)	0,129(+0) 0,304(+0)
6p[5/2]36d[1/2]1	985.27			0,022(12)2		0.157(+0)
6p[5/2]36d[1/2]0	991.01					0.231(+1)
6s[3/2]16p[5/2]2	992.32	0,5(+0)	0,2(+2)	0,13(+2) C	0,483(+0)	0,204(+1)
		0,45(+0)G	, , , ,	0,218(+2) D	0,428(+0)	0,834(+1)
6p[3/2]16d[7/2]3	992.89					0,791(+1)
6p[3/2]26d[5/2]2	996.66	0,101(-1)	0,68(+0)		0,169(-2)	
					0,161(-2)	0,872(+0)
6p[3/2]16d[7/2]4	1004.18					0,87(+0)
6p[1/2]06d[3/2]1	1008.48	0,567(-1)	0,12(+1)		0,374(+0)	0,326(+0)
					0,213(+0)	0,368(+0)
6p[3/2]26d[7/2]3	1018.84				0,34(-2)	
					0,306(-2)	0,112(+2)
6p[3/2]16d[3/2]2	1025.1	0,183(-1)	0,69(+0)		0,452(-1)	0,113(+2)
	1000 50				0,372(-1)	0,422(+1)
6p[3/2]26d[7/2]4	1030.73	0.62(.2)	0.20(0)		0.000(.0)	0,458(+1)
op[3/2]10d[1/2]1	1042.06	0,63(-2)	0,39(+0)		0,229(-3)	0,596(+0)
6p[2/2]1 6d[1/2]0	1042.00	0.12(+0)	0.24(+2)		0,901(-3)	$0,778(\pm 0)$
0p[3/2]10u[1/2]0	1040.40	0,13(+0)	0,24(+2)		0,028(-2) 0.515(-2)	0,333(+0) $0.409(\pm 0)$
6p[3/2]26d[3/2]2	1052.78	0.104(+0)	0.63(+1)		$0.133(\pm 0)$	0,407(10)
op[5/2]2 00[5/2]2	1002.00	0,101(10)	0,05(11)		0.109(+0)	
6p[1/2]06d[5/2]3	1061.77				- , (- ,	0.207(+0)
6p[3/2]26d[1/2]1	1070.68	0,198(-1)	0,19(+1)		0,323(-1)	0,434(+0)
			· 、 ·		0,251(-1)	0,302(-2)
6p[3/2]26d[1/2]0	1077.46					0,206(+0)
6s[3/2]16p[1/2]1	1083.83	0,522(-1)	0,3(+1)	0,97(+0) C	0,459(-1)	0,102(+0)
		0,35(-1)G		0,19(+1) D	0,241(-1)	0,124(+0)
6p[1/2]06d[5/2]2	1095.67					0,343(-1)
5d[1/2]07p[1/2]0	1102.11					0,244(-1)
5d[1/2]07p[3/2]1	1114.11	0,1(-3)	0,18(-2)		0,762(-1)	0,479(+0)
					0,839(-1)	0,324(+0)
5d[1/2]07p[3/2]2	1121.37					0.025(1)
6p[1/2]06d[7/2]3	1122.54		0.01(1)		0.152(1)	0,935(+1)
Sa[1/2]17p[1/2]0	1128.91	0,2(-3)	0,31(-1)		0,173(-1)	0,812(+1)
6n[1/2]0 6d[7/2]4	1126.00				0,672(-2)	
5d[1/2]00u[7/2]4	11/1 51	0.1(.3)	0.51(2)		0.754(2)	
Ju[1/2]1/p[J/2]1	1141.31	0,1(-3)	0,51(-2)		0,754(-2) 0.167(-1)	0.973(+0)
5d[1/2]17p[3/2]2	1149.12	0.1(-3)	0.3(-2)		0.949(-2)	0.573(+0)
	11 12.12	5,1(5)	0,0(2)		0,266(-1)	0,163(+2)
5d[1/2]07p[5/2]3	1149.38	1			, (- /	0,147(+2)
5d[7/2]47p[1/2]0	1156.34				1	0,269(+1)
6p[1/2]06d[3/2]2	1163.89					0,25(+1)
•	-	-	-	-		-

5d[1/2]07p[5/2]2	1165.12				0,248(+0)
5d[7/2]47p[3/2]1	1169.55				0,258(+0)
5d[3/2]27p[1/2]0	1173.45				0,185(+1)
5d[7/2]47p[3/2]2	1177.55				0,212(+1)
5d[1/2]17p[5/2]3	1178.56				
6p[1/2]06d[1/2]1	1185.8	0,343(+0)	0,54(+1)	0,522(-1)	0,562(-3)
		, , ,	, , ,	0,268(-1)	0,107(-1)
5d[3/2]27p[3/2]1	1187.07	0.1(-3)	0.75(-2)	0.277(-3)	0.42(-3)
		<i>,</i> , , ,	, , ,	0,134(-2)	0,506(-2)
6p[1/2]06d[1/2]0	1194.12				
5d[1/2]17p[5/2]2	1195.12			0.204(-1)	0.98(-2)
• •[-,-]- · F[•,-]-				0.188(-1)	0.17(-1)
5d[3/2]27p[3/2]2	1195.31	0.9(-3)	0.4(-1)	0.508(-2)	
o a[o, _]_ , p[o, _]_	1190101	0,2(0)	0, 1(1)	0.616(-2)	0.681(+0)
5d[7/2]47p[5/2]3	1208.48	0.3(-2)	$0.18(\pm 0)$	0.171(-1)	$0.722(\pm 0)$
54[#2]1 #P[5/2]5	1200.10	0,5(2)	0,10(10)	0,1/1(1) 0,202(-1)	0,722(10)
6n[1/2]17s[3/2]1	1223 52	0.76(-2)	0.34(+0)	0,202(1)	0.246(+1)
000000000000000000000000000000000000000	1223.32	0.12(-1)G	0,51(10)	0,122(1) 0.118(-1)	0,210(+1) 0.115(+1)
$5d[1/2]0_{}7n[1/2]1$	1225 77	0,12(1)0	0.74(-1)	0,110(1)	$0.24(\pm 0)$
Ju[1/2]0/p[1/2]1	1225.77	0,5(-2)	0,74(-1)	0,23(-1) 0.378(-1)	0,24(10) 0,205(+0)
$5d[7/2]/_{}7n[5/2]/_{}$	1225.9			0,570(-1)	0,203(+0)
5d[7/2] $-7p[5/2]$ $-5d[3/2]$ $-7p[5/2]$	1225.5	0.28(-2)	0.84(-1)	0.223(-2)	0,574(+1)
Ju[J/2]2/p[J/2]J	1227.17	0,20(-2)	0,04(-1)	0,225(-2) 0,245(-2)	0,324(+1) 0.114(+1)
5d[2/2]2 7p[5/2]2	1245 15	0.1(3)	0.41(.2)	0,2+3(-2)	0,114(+1) 0.038(+0)
Ju[J/2]2/p[J/2]2	1245.15	0,1(-3)	0,41(-2)	0,724(-3) 0.192(3)	$0,938(\pm 0)$ 0.141(-1)
5d[1/2]1 = 7n[1/2]1	1259.02	0.56(.2)	$0.23(\pm 0)$	0,192(-3)	0,141(-1) 0,553(1)
Ju[1/2]1/p[1/2]1	1239.02	0,50(-2)	0,23(+0)	0,4/4(-1) 0.686(1)	0,333(-1) 0.172(+1)
6n[1/2]1 - 7s[3/2]2	1262.34	0.417(-1)	$0.1(\pm 1)$	0,030(-1)	0,172(+1) 0.142(+1)
0p[1/2]178[5/2]2	1202.34	0,417(-1) 0.17(+0)G	0,1(+1)	0,161(+0) 0.165(+0)	0,142(+1)
5d[7/2]3 7p[1/2]0	1270	0,17(+0)0		0,105(+0)	
5d[7/2]3 - 7p[7/2]0	1270				$0.846(\pm 1)$
$\frac{5d[7/2]3 7p[3/2]1}{5d[7/2]4 - 7p[1/2]1}$	1203.90				0,840(+1)
$\frac{5d[7/2]47p[1/2]1}{5d[7/2]2-7p[2/2]2}$	1295.22			0.420(.2)	0,793(+1)
Ju[//2]J/p[J/2]2	1295.04			0,439(-3)	$0.760(\pm 1)$
5d[2/2]2 7p[1/2]1	1214 67	0.167(1)	0.1(+0)	0,557(-5)	0,709(+1)
Ju[J/2]2/p[1/2]1	1314.07	0,107(-1)	0,1(+0)	0,505(-2)	0,411(+1)
5d[7/2]2 7m[5/2]2	1222.10	0.7(2)	0.27(1)	0,047(-2)	0.164(.2)
5d[//2]5/p[5/2]5	1555.18	0,7(-3)	0,27(-1)	0,503(-2)	0,164(-2)
5 4[7/0]2 7 - [5/0]0	1254 41	0.152(1)	0.78(+0)	0,349(-2)	0,949(-2)
5u[//2]5/p[5/2]2	1554.41	0,132(-1)	0,78(+0)	0,279(-1) 0.175(1)	0.274(1)
6n[5/2]2 - 7n[2/2]1	1265 7	0.40(-1)	0.20(+1)	0,1/3(-1)	0,274(-1)
op[5/2]2/\$[5/2]1	1305.7	0,49(-1)	0,29(+1)	0,14(+0) 0,122(+0)	0,555(-1)
(=[5/0]0 7=[2/0]0	1414.24	0,14(+0)0	0.10(+0)	0,133(+0)	0,307(-3)
6p[5/2]2/s[3/2]2	1414.24	0,58(-2)	0,19(+0)	0,694(-1)	0,755(-3)
C. [5/0]2 7. [2/0]1	1420 (9	0,05(-1)G		0,010(-1)	0,084(-2)
op[5/2]578[5/2]1	1420.08				0,103(-1)
5d[//2]3/p[1/2]1	1437.07				0,114(+1)
5d[5/2]27p[1/2]0	1445.37	0.120(.1)	0.72(0)		0,114(+1)
5d[5/2]2/p[3/2]1	1466.08	0,139(-1)	0,72(+0)	0,28(-1)	0,601(-2)
	1472.20		0.06(1)	0,112(-1)	0,199(-2)
6p[5/2]37s[3/2]2	1473.28	0,61(-1)	0,26(+1)	0,217(+0)	0,377(+1)
	1.180.55	0,2(+0)G	0.524.53	0,189(+0)	0,315(+1)
5d[5/2]27p[3/2]2	1478.67	0,17(-2)	0,52(-1)	0,483(-4)	0,324(+1)
	1 500 07		0.104.13	0,555(-4)	0,29(+1)
6p[1/2]15d[3/2]1	1509.97	0,41(-1)	0,12(+1)	0,135(-2)	0.010/_1
	1	1	1	0,973(-3)	0,313(+1)

5d[5/2]27p[5/2]3	1527.77	0,6(-3)	0,12(-1)	0,108(-2)	0,244(+1)
				0,438(-3)	0,799(+1)
6p[3/2]17s[3/2]1	1541.84	0,518(-1)	0,14(+1)	0,205(+0)	0,654(+1)
		0,2(+0)G		0,187(+0)	
5d[5/2]27p[5/2]2	1555.71	0,1(-1)	0,28(+0)	0,194(-1)	0,154(+0)
				0,777(-2)	0,141(+0)
5d[5/2]37p[1/2]0	1559.13				0,114(+0)
5d[5/2]37p[3/2]1	1583.26				0,108(+0)
5d[5/2]37p[3/2]2	1597.95	0,238(-1)	0,87(+0)	0,471(-1)	0,989(+1)
				0,226(-1)	0,925(+1)
6p[3/2]17s[3/2]2	1603.99	0,12(-1)	0,17(+0)	0,154(-1)	0,151(-4)
		0,14(-1)G		0,132(-1)	0,297(-2)
6p[3/2]27s[3/2]1	1605.33	0,65(-2)	0,28(+0)	0,751(-1)	
		0,72(-1)G		0,674(-1)	0,34(+0)
5d[5/2]37p[5/2]3	1655.44	0,126(-1)	0,31(+0)	0,124(-1)	0,559(+0)
				0,456(-2)	
5d[5/2]27p[1/2]1	1665.76			0,195(-3)	
				0,171(-7)	
6p[3/2]27s[3/2]2	1672.81	0,62(-1)	0,15(+1)	0,158(+0)	0,136(+1)
		0,14(+0)G		0,132(+0)	0,15(+1)
5d[5/2]37p[5/2]2	1688.3	0,7(-3)	0,23(-1)	0,429(-2)	
				0,101(-2)	0,362(-5)
6p[5/2]25d[3/2]1	1732.57	0,82(-2)	0,3(+0)	0,821(-2)	0,912(-3)
				0,425(-2)	0,199(+1)
5d[5/2]37p[1/2]1	1818.7				0,289(+1)
6p[5/2]35d[3/2]1	1822.02				0,57(+0)
6p[1/2]07s[3/2]1	1878.81	0,744(-1)	0,47(+0)	0,261(+0)	0,527(+0)
		0,23(+0)G		0,208(+0)	
6p[1/2]15d[5/2]3	1937.05				0,288(+0)
6p[1/2]07s[3/2]2	1971.91				0,806(+0)
5d[3/2]17p[1/2]0	2018.71	0,422(-1)	0,21(+1)	0,997(-2)	0,386(+0)
				0,198(-1)	0,854(+0)
6p[3/2]15d[3/2]1	2026.22	0,11(+0)	0,18(+1)	0,152(+0)	0,272(+1)
				0,707(-1)	0,105(+1)
5d[3/2]17p[3/2]1	2059.34	0,46(-2)	0,72(-1)	0,195(-1)	
				0,887(-2)	
5d[3/2]17p[3/2]2	2084.27	0,48(-2)	0,44(-1)	0,196(-3)	
				0,239(-3)	
6p[3/2]25d[3/2]1	2137.3	0,127(-1)	0,31(+0)	0,247(-3)	
				0,819(-4)	
6p[1/2]15d[5/2]2	2147			0,606(-2)	
				 0,288(-2)	0,164(+1)
5d[3/2]17p[5/2]3	2183.16				0,131(+1)
5d[3/2]17p[5/2]2	2240.67	0,58(-2)	0,46(-1)	0,183(-2)	
				0,347(-3)	0,825(+0)
6p[5/2]25d[5/2]3	2319.33	0,37(-2)	0,33(-1)	0,217(+0)	0,423(+0)
				0,146(-1)	
5d[3/2]17p[1/2]1	2476.31	0,172(-1)	0,19(+0)	0,682(-3)	
				 0,256(-2)	
6p[5/2]35d[5/2]3	2482.47	0,49(-1)	0,53(+0)	0,443(-1)	
				0,299(-1)	
6p[5/2]25d[5/2]2	2626.9	0,429(-1)	0,41(+0)	0,767(-1)	0,817(+1)
				0,548(-1)	0,466(+1)
6p[1/2]05d[3/2]1	2651.08	0,165(+0)	0,52(+0)		
6p[1/2]15d[7/2]3	2701.01				

7s[3/2]27p[1/2]0	2736.37				0,1(+)
7s[3/2]27p[3/2]1	2811.55	0,493(-1)	0,69(+0)	0,17(-1)	0,119(+1)
				0,133(-1)	
6p[5/2]35d[5/2]2	2838.15	0,2(-2)	0,23(-1)	0,296(-2)	
				0,21(-2)	
7s[3/2]27p[3/2]2	2858.22	0,444(+0)	0,36(+1)	0,339(+0)	0,362(+0)
				0,265(+0)	0,416(+0)
6p[3/2]15d[5/2]3	2877.59				0,311(-1)
7s[3/2]17p[1/2]0	2938.43	0,165(+0)	0,38(+1)	0,156(+0)	0,828(-2)
_				0,145(+0)	0,706(-1)
7s[3/2]17p[3/2]1	3025.3	0,414(+0)	0,3(+1)	0,377(+0)	0,776(-1)
_				0,362(+0)	0,237(+0)
7s[3/2]27p[5/2]3	3047.54	0,681(+0)	0,35(+1)	0,828(+0)	0,287(+0)
				0,672(+0)	0,218(-1)
7s[3/2]17p[3/2]2	3079.4	0,82(-1)	0,35(+0)	0,364(+0)	0,105(+0)
				0,35(+0)	
6p[3/2]25d[5/2]3	3106.92	0,139(+0)	0,68(+0)	0,232(+0)	
				0,232(+0)	0,142(+1)
7s[3/2]27p[5/2]2	3160.78	0,143(+0)	0,95(+0)	0,202(+0)	0,889(+0)
				0,167(+0)	0,189(+0)
6p[1/2]15d[3/2]2	3273.92	0,778(-1)	0,33(+0)	0,769(-1)	0,131(+0)
				0,163(+0)	0,244(-1)
7s[3/2]17p[5/2]3	3300.29				0,554(-3)
6p[3/2]15d[5/2]2	3366.66	0,127(+0)	0,45(+0)	0,193(+0)	
				0,205(+0)	
6p[1/2]15d[7/2]4	3414.96				0,78(-2)
7s[3/2]17p[5/2]2	3433.51	0,71(+0)	0,24(+1)	0,545(+0)	0,685(-6)
		, , , ,		0,536(+0)	0,536(+0)
6p[5/2]25d[7/2]3	3507.02	0,133(+0)	0,5(+0)	0,19(+0)	0,214(+0)
				0,198(+0)	0,221(-1)
7s[3/2]27p[1/2]1	3650.83	0,223(+0)	0,19(+1)	0,215(+0)	0,894(-2)
		, , , , ,		0,191(+0)	0,147(-2)
6p[1/2]15d[1/2]1	3678.87	0,48(-1)	0,24(+0)	0,566(-1)	0,169(-2)
				0,914(-1)	0,145(+1)
6p[3/2]25d[5/2]2	3684.87	0,78(-2)	0,38(-1)	0,139(-2)	0,579(+0)
				0,209(-2)	
6p[5/2]35d[7/2]3	3893.95	0,42(-2)	0,18(-1)	0,231(-1)	1
				0,282(-1)	0,14(+0)
6p[1/2]15d[1/2]0	3995.51	0,215(-1)	0,27(+0)	0,185(-1)	0,33(-1)
				0,348(-1)	0,302(+0)
7s[3/2]17p[1/2]1	4019.61	0,722(-1)	0,3(+0)	0,493(-1)	0,111(+0)
				0,466(-1)	0,172(+1)
6p[1/2]05d[5/2]3	4325.49				0,825(+0)
6p[5/2]25d[3/2]2	4538.12	0,3(-3)	0,12(-2)	0,472(-2)	
				0,601(-3)	
7p[1/2]16d[3/2]1	4749.22	0,59(-1)	0,17(+0)	0,249(-2)	0,741(-2)
				0,888(-3)	0,278(-1)
6p[5/2]25d[7/2]4	4813.7				0,146(-1)
6p[3/2]15d[7/2]3	4962.88			1	0,276(-2)
6p[5/2]35d[3/2]2	5207.75	0,23(-2)	0,96(-2)	0,878(-3)	
1		· 、 、 /		0.598(-1)	0,181(-2)
6p[5/2]25d[1/2]1	5355.22			0,198(-2)	0,22(-2)
1. J J				0.218(-1)	0,307(+0)
6p[1/2]05d[5/2]2	5533.87				0,139(+0)
6p[5/2]35d[7/2]4	5573.94	0,703(-1)	0,12(+0)	0,124(+0)	0,489(+0)
		• • • • •	• • • • • •		• · · · · · · ·

				0,26(+0)	0,972(+0)
6p[3/2]25d[7/2]3	5686.81			0,345(-3)	0,18(+1)
				0,513(-3)	0,16(+1)
7p[5/2]26d[3/2]1	5949.07	0,11(-1)	0,35(-1)	0,128(-1)	0,135(+1)
				0,443(-2)	0,111(+1)
6p[5/2]25d[1/2]0	6053.54				0,425(+1)
7p[1/2]16d[5/2]3	6219.36				0,345(+1)
6p[5/2]35d[1/2]1	6313.16				0,277(+1)
7p[5/2]36d[3/2]1	6396.43				0,216(+1)
6p[5/2]35d[1/2]0	7306.83				0.24(+0)
6p[3/2]15d[3/2]2	7314.8	0.43(-2)	0.42(-2)	0.131(-1)	0.187(+0)
F(,=]- **(*,=]-		-,(_)	•,•=(=)	0.228(-1)	0,200 (10)
7p[3/2]26d[3/2]1	7429.27	0.168(-1)	0.34(-1)	0.124(-3)	0.203(+0)
, p[0, _] _ 00[0, _]1	,,,	0,100(1)	0,0 1(1)	0.332(-3)	0.192(+0)
7p[1/2]16d[5/2]2	7595 95			0.806(-5)	0.185(+1)
, p[1/2]1 00[0/2]2	1070170			0.129(-3)	0.182(+1)
7p[3/2]16d[3/2]1	7764 25	0.135(+0)	0.15(+0)	0.132(+0)	0,102(11)
	7701.20	0,155(10)	0,10(10)	0.744(-1)	0.154(+1)
6p[3/2]15d[7/2]4	8058.41			0,711(1)	0,133(+1) 0.148(+1)
7p[1/2]0 - 6d[3/2]1	8401 74	$0.234(\pm 0)$	0.75(-1)	0.534(+0)	0.275(+1)
/p[1/2]0 00[5/2]1	0401.74	0,234(10)	0,75(1)	0,53(+0) 0 273(+0)	0.273(+1) 0.264(+1)
7n[5/2]26d[5/2]3	8451 58	0.5(-2)	0.33(-2)	0 333(-1)	0.362(+1)
/p[5/2]2 00[5/2]5	0451.50	0,5(2)	0,35(2)	0,335(1) 0.24(-1)	0,302(+1) 0.336(+1)
6n[3/2]25d[3/2]2	9004 25	0.5(-1)	0.57(-1)	0.333(-1)	0.278(-1)
op[3/2]23u[3/2]2	2004.25	0,5(-1)	0,37(-1)	0,333(-1) 0.407(-1)	0,270(-1) 0.629(-1)
7n[1/2]16d[7/2]3	9106 94			0,+07(1)	0,029(-1)
$7p[1/2]^{1-1}od[7/2]^{3}$ $7p[5/2]^{3}6d[5/2]^{3}$	9383.97	0.66(-1)	0.5(-1)	0.52(-1)	0,500(-1)
/p[5/2]50u[5/2]5	2303.21	0,00(-1)	0,5(-1)	0,52(-1)	0,356(-1)
6p[3/2]15d[1/2]1	9700 53	0.29(-2)	0.21(-2)	0,592(-3)	0,330(1)
0p[3/2]13u[1/2]1	2700.55	0,27(-2)	0,21(-2)	0,3,2(-3) 0,713(-2)	0,491(-1)
$7n[1/2]1_{}6d[7/2]4$	10154.01			0,713(2)	
fp[1/2]1 od[7/2]4 $6p[3/2]2_{}5d[7/2]4$	10158.11				0.559(-5)
7n[5/2]25d[7/2]4	11213.03	0.523(-1)	0.28(-1)	0.873(-1)	0,355(-5)
/p[5/2]20u[5/2]2	11215.05	0,323(-1)	0,20(-1)	0,675(-1)	0,000(-4)
6p[1/2]05d[7/2]3	11741 1			0,020(-1)	0.737(-2)
$\frac{0}{7}$	11798.26	$0.10(\pm 0)$	0.65(1)	0.282(+0)	0,757(-2)
/p[3/2]20u[3/2]3	11788.20	0,19(+0)	0,05(-1)	0,232(+0)	0,203(-2)
6n[3/2]1 - 5d[1/2]0	12263	0.585(1)	0.78(1)	0,23(+0)	0.108(.3)
op[3/2]13u[1/2]0	12203	0,385(-1)	0,78(-1)	0,422(-3)	0,108(-3) 0.120(-2)
7n[3/2]1 - 6d[5/2]3	12654 54			0,804(-2)	0,129(-2) 0,231(3)
$7p[3/2]^{0u[3/2]3}$	12034.34	0.102(+0)	0.25(1)	0.146(+0)	0,231(-3)
/p[1/2]100[3/2]2	12/93.1	0,102(+0)	0,23(-1)		0,307(-3)
6m[2/2]2 5d[1/2]1	12012 70	0.87(2)	0.58(2)	0,201(+0)	0.520(1)
0p[3/2]23u[1/2]1	12913.79	0,87(-2)	0,38(-2)	0,240(-2)	0,329(-1)
7p[5/2]2 6d[5/2]2	12015 62	0.24(.2)	0.12(2)	0,142(-1)	0,094(-1)
/p[3/2]30u[3/2]2	12913.05	0,24(-2)	0,15(-2)	0,303(-2)	0,403(-1) 0.222(1)
7m[1/2]0 6d[5/2]2	14440.22			0,240(-2)	0,332(-1)
/p[1/2]00d[5/2]3	14440.55	0.189(+0)	0.41(.1)	0.245(+0)	0,222(-1)
/p[3/2]200[//2]3	14630.18	0,188(+0)	0,41(-1)	0,245(+0)	0,10(-1)
7[1/0]1	16056 12	0.644(1)	0.17(1)	0,321(+0)	0,401(-1)
/p[1/2]16d[1/2]1	10056.12	0,044(-1)	0,17(-1)		0,139(-1)
$7_{m}[1/2]1 = C_{1}[1/2]0$	17720 19	0.2(.2)	0.10(.2)		
/p[1/2]160[1/2]0	17729.18	0,3(-2)	0,19(-2)		0.126(2)
7	17952			0,988(-1)	0,120(-3)
/p[5/2]26d[//2]4	1/852			<u> </u>	0, / / 5(-3)
op[3/2]25d[1/2]0	1/890.49				0,186(-1)

7p[3/2]26d[5/2]2	17956.22	0,9(-2)	0,19(-2)	0,494(-3)	0,418(-1)
		, , , ,	/ 、 /	0,174(-2)	0,607(-2)
7p[5/2]36d[7/2]3	17991.15	0,57(-2)	0,12(-2)	0,295(-1)	0,844(-2)
				0,41(-1)	0,171(-2)
7p[3/2]16d[5/2]2	20046.58	0,88(-1)	0,87(-2)	0,822(-1)	0,138(-2)
-				0,461(-1)	0,394(-1)
7p[5/2]36d[7/2]4	22593.88	0,708(+0)	0,72(-1)	0,183(+0)	0,208(-1)
				0,411(+0)	
7p[1/2]06d[5/2]2	24930.61				
7p[5/2]26d[3/2]2	28020.8	0,8(-3)	0,68(-4)	0,272(-2)	
				0,691(-2)	
6d[1/2]07p[1/2]0	28462.85				
5d[1/2]06p[1/2]0	28752.9				
7p[3/2]26d[7/2]3	29543.56			0,702(-4)	
				0,148(-3)	0,79(-6)
6d[1/2]17p[1/2]0	34180.85	0,66(-2)	0,11(-2)		0,319(-3)
7p[3/2]16d[7/2]3	35661.88				
6d[1/2]07p[3/2]1	39430.57	0,46(-1)	0,66(-3)		0,383(-5)
7p[5/2]36d[3/2]2	41786.06	0,179(-1)	0,95(-3)	0,235(-2)	0,807(-5)
				0,145(-1)	0,102(-3)
7p[3/2]26d[7/2]4	44394.7				0,36(-3)
6p[1/2]05d[3/2]2	49058.22				0,967(-1)
7p[5/2]26d[1/2]1	50468.24			0,248(-2)	0,788(-1)
				0,295(-1)	0,25(-3)
6d[1/2]07p[3/2]2	51140.82				0,667(-3)
6d[1/2]17p[3/2]1	51325.05	0,7(-3)	0,18(-4)		
7p[1/2]06d[7/2]3	54738.56				
7p[3/2]16d[7/2]4	59815.65				
7p[5/2]26d[1/2]0	71751.09				
6d[1/2]17p[3/2]2	73118.22	0,33(-2)	0,25(-4)		0,818(-2)
6d[3/2]27p[1/2]0	74722.69				0,458(-2)
5d[1/2]16p[1/2]0	75539.66	0,92(-2)	0,32(-3)	0,103(-3)	
				0,26(-1)	0,145(+0)
7p[5/2]36d[1/2]1	124098.92				0,823(-1)
6p[1/2]05d[7/2]4	128720.38				
7p[1/2]06d[7/2]4	143977.2				
6d[3/2]27p[3/2]1	276983.24	0,78(-2)	0,11(-4)		
7p[3/2]26d[3/2]2	455196.47	0,25(-1)	0,8(-5)	0,246(-2)	
				0,999(+0)	0,168(+0)
7p[5/2]36d[1/2]0	458564.56				0,892(-1)
6p[5/2]38s[3/2]2	!!!	0,14(-1)G			
6p[5/2]28s[3/2]2		0,6(-2)G			
6p[3/2]18s[3/2]2		0,34(-2)G			
6p[3/2]18s[3/2]1		0,1 (-1)G			
6p[3/2]28s[3/2]2		0,13(-1)G			
6p[3/2]28s[3/2]1		0,4(-2)G			

2. Схема экспериментальной установки

Исследование неравновесной низкотемпературной ксеноновой плазмы холловского двигателя (ХД) осуществлялось в лаборатории плазменных двигателей МФТИ (рис 2). Экспериментальный стенд включает в себя горизонтально расположенную цилиндрическую вакуумную камеру диаметром 1,8 м и длиной 4,5м. Высоковакуумная откачная система обеспечивает остаточное предельное давление 2·10⁻⁷ мбар. Рабочее давление на номинальном режиме работы двигателя составляло 8·10⁻⁵ мбар. Внутри камеры расположен макет ХД с ускоряющим напряжением 300 В. Рабочим телом является тяжелый инертный газ - ксенон высокой очистки. Упрощенная схема данного типа двигателя приведена на рис 3.

Рис.2. Фотография ТМВУ-11.

Рис.3. Схема холловского двигателя.

Основными конструктивными элементами ХД являются катодкомпенсатор (1) и анод (2), между которыми создается разность потенциалов таким образом, чтобы электрическое поле было направленно по оси двигателя. Через отверстия в аноде в канал поступает нейтральный газ. Катод-компенсатор вследствие нагрева эмитирует электроны, которые под действием электрического поля устремляются частично в стркю, а частично в

сторону анода где попадают в область сильного магнитного поля В. В магнитопровода выступает корпус блока (3)качестве анодного изготовленный из магнитомягкого материала. Внутри корпуса расположены электромагнитные катушки (4), создающие неоднородное радиальное магнитное поле, максимальная напряженность которого находится у среза действием Под Лоренца электроны двигателя. силы начинают азимутальное движение циклоиде, ионизуя нейтральный ПО газ. Образовавшиеся ионы ускоряются электрическим полем ВДОЛЬ оси двигателя, создавая тягу и образуя плазменную струю.

Схема оптических измерений приведена на рисунке 4. Излучение ХД принималось по двум различным оптическим путям. Основные измерения производились 7-и сантиметровым объективом, установленным внутри вакуумной камеры в струе плазменного двигателя рис. 4. Основные измерения производились 7 см объективом, установленным внутри вакуумной камеры на манипулятор с 6-тью степенями свободы рис. 5, осуществлять позволяющий линейное вращательное движение И относительно 3х координатных осей. Для того чтобы избежать запыления оптических элементов, объектив защищен сменным стеклом. Оптика приемной системы выполнены из кварца, что позволяло проводить измерения от 250 нм до 2000нм.

Рис. 4. Схема экспериментальной установки

Рис.5. Оптическая система в сборе установленная внутри вакуумной камеры

Сигнал с объектива передавался по оптоволокну и фокусировался согласующей оптической системой на входную щель монохроматора М 266. На выходе из монохроматора световой сигнал подается на ПЗС линейку серии Hamamatsu или Toshiba. Альтернативной собирающей оптической схемой является линза D=10см, установленная перпендикулярно струе ХД напротив измерительного окна вакуумной камеры и поворотное зеркало для заведения излучения в монохроматор. Ширина входной щели монохроматора составляла 35 мкм. Калибровка монохроматора по частоте осуществлялась

дуговой ртутно-гелиевой лампой ДРГС-12. При сканировании в длинноволновой области для исключения наложения разных порядков дифракционной решетки использовались фильтры.

3. Обработка результатов

Измерения проводились при давлении ниже 8-10⁻⁵ мбар, что позволяет пренебречь влиянием остаточного газа в вакуумной камере (кислорода, азота, водорода) на исследуемое излучение, поскольку суммарная его концентрация меньше 1,3 % от ксенона. Измерения, проводимые на разном расстоянии от среза разрядной камеры ХД показали, что в первом приближении плазма струи ХД может считаться оптический прозрачной для исследуемого диапазона длин волн. При обработке сигнала была учтена аппаратная функция монохроматора, которая вносит искажения в имеющийся спектральный контур, а так же тот факт, что ионы имеют направленное движение, поэтому в зависимости от угла наблюдения профиль линии будет иметь различный сдвиг и уширение.

Исследуемый спектр плазменной струи ХД, представлен на рис.6. Линии атомов ксенона проявляются более ярко ближе к длинноволновому участку, излучение же ионов наблюдается в основном в видимом диапазоне.

Оценка общей энергии теряемого излучения производилась интегрированием интенсивностей с выбранного объема по всем измеренным спектральным линиям и экстраполированием полученной величины на всю плазменную струю ХД в предположении ее однородности. В данных приближениях теряемая энергия составила порядка 0,5 Вт. Стоит отметить, что излучение в ультрафиолетовой области, ответственное за переходы в основное состояние, и дальнем ИК диапазоне, в котором лежит значительная часть переходов нейтрального ксенона, не учитывались, что связанно с техническими сложностями в измерении этих диапазонов.

Рис.6 – Спектр плазменной струи ХД

Для определения заселенности частиц спектры снимались для различных частей плазменной струи под разными углами (рис 7). В положении 1 объектив устанавливался соосно струе ХД и "смотрел" на центр канала. Положение 2 снималось внешней линзовой системой перпендикулярно оси двигателя на расстоянии 1 см от среза, положение 3 — под углом 14° к оси ХД начиная от среза канала. 4-ое положение было снято в другой плоскости, отстоящей от положения 1 на 12° вниз.

Для определения заселенностей исследовались переходы атома ксенона, вероятности которых представлены в табл.1. Для более полного изучения заселённостей, используемые данные дополнены другими типами переходов [19-22].

Рис. 7. Размещение оптической приёмной системы относительно струи двигателя.

Полный перечень рассматриваемых длин волн λ_{ij} , вероятностей A_{ij} ,

стат.весов g_i и измеренных интенсивностей N_i, вероятностей и измеренных

интенсивностей представлен в табл. 2.

Таблица 2

λ, нм	A _{ij} , c⁻¹	Gi	N _i пол.1	N _i пол.2	N _i пол.3	N _i пол.4	Е _{верх ,} эВ
407.882	4.90E+05	1	2.18E+06	8.99E+06	1.55E+06	1.88E+06	11.47473
450.0978	3.90E+05	3	9.24E+05	1.46E+07	8.50E+05	3.51E+06	11.06852
458.2747	3.90E+05	1	6.28E+06	2.29E+07	1.49E+06	6.12E+06	11.14059
462.4276	4.70E+06	5	1.13E+06	4.10E+06	7.22E+05	1.57E+06	10.9951
467.1226	3.00E+06	7	2.52E+06	9.16E+06	1.50E+06	3.93E+06	10.96816
469.7021	9.00E+05	5	1.28E+06	5.31E+06	5.79E+05	1.99E+06	10.95359
473.4152	9.00E+04	5	1.92E+07	6.68E+07	6.89E+06	2.16E+07	11.0541
479.2619	8.20E+05	3	5.49E+05	2.00E+06	2.96E+05	9.65E+05	10.90096
480.7019	4.80E+06	1	7.22E+05	3.35E+06	6.23E+05	1.24E+06	11.01441
482.9708	3.20E+06	3	5.72E+05	2.37E+06	8.64E+05	8.66E+05	11.0023
484.3293	3.70E+05	5	6.18E+06	2.25E+07		7.85E+06	10.9951
492.3152	1.60E+06	5	2.23E+06	4.11E+06	1.67E+06	1.92E+06	10.95359
556.6615	2.90E+06	3	7.74E+04	2.82E+05	4.12E+04	1.05E+05	11.80615
558.1784	3.22E+06	1	3.18E+04	1.32E+05	1.99E+04	2.35E+04	11.8001
581.4505	9.30E+05	5	7.44E+04	3.07E+05			11.81669
587.5018	2.42E+06	5	3.04E+05	1.12E+06	2.38E+05	6.19E+05	11.68927
619.826	6.60E+05	5	3.51E+05	2.55E+06	2.19E+05	1.03E+06	11.57925
622.4168	1.29E+06	5	9.92E+04	4.10E+05			11.81185
626.1212	1.37E+06	7	7.96E+04	2.14E+05		2.81E+05	11.69973
631.8062	2.70E+06	9	1.75E+06	6.05E+06	1.28E+06	3.66E+06	11.68191
653.3159	1.03E+06	3	3.54E+05	2.61E+06	2.66E+05	3.01E+05	11.58221
663.2464	1.94E+06	5	6.86E+04	5.07E+05		5.24E+05	11.68927
684.6613	3.00E+04	5	2.13E+07	1.44E+08	1.21E+07	6.98E+07	11.49535
688.2155	6.40E+06	7	3.32E+06	7.56E+06	2.61E+06	5.52E+06	11.48601
697.6182	1.91E+06	7	9.00E+05	5.01E+06	2.62E+05	2.69E+06	11.49685
711.9598	6.60E+06	9	3.59E+06	1.30E+07	3.32E+06	8.49E+06	11.46106
738.6003	1.25E+06	5	3.48E+05	6.65E+06		9.79E+05	11.25769

739.3793	4.89E+06	7	5.30E+05	4.67E+06	2.91E+05	1.85E+05	11.49685
788.7393	1.04E+06	1	1.43E+08	5.11E+08	1.31E+08	2.72E+08	11.14059
796.7342	3.00E+05	3	9.66E+07	3.46E+08	8.60E+07	2.62E+08	11.0023
823.1634	3.10E+07	5	3.60E+07	1.70E+08	3.49E+07	7.99E+07	9.820539
828.0116	3.20E+07	1	2.58E+07	1.22E+08	2.66E+07	7.02E+07	9.932924
840.9189	5.50E+06	3	5.40E+06	7.77E+07	3.70E+06	2.56E+07	9.788747
873.9372	5.20E+06	5	7.64E+06	3.30E+07	6.07E+06	2.27E+07	10.99783
881.9411	3.00E+07	7	1.90E+08	2.69E+08	1.84E+08		9.720191
886.232	7.70E+06	3	5.96E+06	2.03E+07	6.36E+06	1.47E+07	10.97815
890.873	1.20E+07	1	2.20E+06	4.99E+06		2.94E+06	10.97087
895.2251	2.90E+06	5	1.25E+08	6.43E+08	3.06E+08	3.91E+08	9.820539
898.757	2.30E+06	5	1.32E+07	4.28E+07	1.06E+07	9.21E+06	11.06413
902.598	1.40E+06	3	9.92E+06	2.96E+07	1.81E+07		11.16193
904.5447	8.30E+06	5	1.14E+08	2.30E+08	9.06E+07	1.44E+08	9.685073
916.2652	2.30E+07	3	9.99E+06	2.50E+07	1.81E+07	2.16E+07	9.788747
916.752	9.80E+06	7	5.94E+06	1.24E+07	2.02E+06	5.31E+06	11.03706
941.201	5.10E+05	7	5.64E+07	3.39E+08	2.48E+07	1.13E+08	11.03706
944.146	4.50E+04	5	2.97E+08	1.78E+09	4.11E+08	3.07E+08	10.99783
951.3377	1.20E+07	9	2.32E+07	4.83E+07	1.19E+07	8.39E+07	11.02302
968.532	5.00E+06	7	3.67E+07	9.12E+07	3.85E+06	3.51E+07	11.10024
970.099	5.90E+05	5	1.82E+07	2.21E+08	1.29E+07		10.99783
971.816	5.90E+06	5	5.23E+06	7.89E+06	7.17E+06	2.71E+06	11.06413
979.9697	1.80E+07	3	7.14E+07	7.74E+07	1.44E+08	2.09E+08	9.579611
992.3198	2.00E+07	5	1.96E+08	3.90E+08	1.09E+08	2.60E+08	9.685073
1008.479	1.20E+06	3	2.68E+07	9.94E+07	2.58E+07		11.16193
1025.107	6.90E+05	5	1.18E+07	4.28E+07			10.99783
1052.786	6.30E+06	5	4.88E+06	1.78E+07	3.86E+06	6.19E+06	10.99783
1083.834	3.00E+06	3	1.06E+07	3.87E+07	9.40E+06	1.62E+07	9.579611

4. Обсуждение результатов

По результатам обработки спектров (табл.2) построены зависимости концентраций возбужденных состояний, как функции энергий этих состояний для каждого положения 1-4, рис. 8, а также заселённости, нормированные на статистический вес каждого состояния соответственно, рис.9. Из-за неоднородности плазменной струи ХД данные по различным измерениям имеют отличие абсолютных интенсивностей, но тип зависимости сохраняется.

Рис.9. РВС с учётом стат. весов: полопжение1, полопжение2.

Это говорит о неком общем характере плазмы за срезом канала ХД, что позволяет составлять единый алгоритм в расчётах многоуровневой кинетики.

Выводы

Для дальнейшего освоения космоса необходимы двигательные установки с импульсом тяги, превышающим 2500 с, и ресурсом не менее 6000 [23]. Однако, до сих пор не создано какой-либо универсальной работы ускорителей теоретической модели c замкнутым дрейфом электронов. Поэтому возникает необходимость проверять работоспособность двигателей и производить их модификации эмпирическими методами, что достаточно не эффективно и дорого [24,25]. Для более детального понимания процессов происходящих в ХД, необходимо качественное описание его плазменной компоненты.

Оптические исследования подтвердили непригодность в целях диагностики плазмы ХД как модели ЛТР, так и коронального приближения. Значения концентраций возбуждённых состояний, получены с использованием рассчитанных вероятностей в кулоновском приближении для дипольных переходов.

Для более полной обработки спектра, также рассматривались коэффициенты Эйнштейна, приведенными другими авторами. В работе получено, что РВС атома ксенона, как результат обработки спектров плазменной струи ΧД, представляют собой "рой" точек, плохо аппроксимирующийся линейными зависимостями. Измерения спектральных интенсивностей различных участков струи ХД, показали, что полученные РВС сохраняют свой детальный характер в независимости от исследуемого положения, при незначительном уменьшении концентраций возбужденных состояний атомов ксенона от положения один к четыре.

Таким образом, первая часть поставленной задачи выполнена. Далее, в рамках многоуровневой кинетики можно рассчитать заселённости этих же фото-переходов, используя те же коэффициенты Эйнштейна (что принципиально). Добиться совпадения теоретически полученной PBC с экспериментальной и тем самым, определить концентрацию электронов и их температуру, плотность ядер и их температуру.

Библиографический список

1. Грим Г. Спектроскопия плазмы. - М.: Атомиздат, 1969. - 452 с.

 Методы исследования плазмы /ред. Лохте – Хольтгревена. - М.: Мир, 1971.— 552 с.

3. Гаврилова А.Ю., Киселёв А.Г., Скороход Е.П. Диаграммы метаравновесных состояний тяжёлых инертных газов // Теплофизика высоких температур. 2014. Т. 52. №2. С.174-185.

4. Войницкий С.О., Скороход Е.П. Расчёт заселённостей аргона в проточной дуге // Труды МАИ, 2012, № 50: http://www.mai.ru/science/trudy/published.php?ID=28694

 Гаврилова А.Ю., Кули-заде М.Е. Скороход Е.П. Распределения возбуждённых состояний атомов в плазменной струе аргона // Труды МАИ, 2012, № 50: <u>http://www.mai.ru/science/trudy/published.php?ID=28604</u>

6. Бугрова А.И., Ермоленко В.А., Калихман Л.Е. Излучательнные характеристики ксенона в разреженной плазме // Теплофизика высоких температур. 1979. Т.17. №5. С. 916-921.

 Скороход Е.П. Спектроскопические методы исследования физико– химических и тепловых процессов в плазменных устройствах: дисс... доктора техн. наук. М.: 2003.

 Гаврилова А.Ю., Киселёв А.Г., Скороход Е.П. Распределения заселенностей атомных уровней в квазистационарной плазме аргона // Теплофизика высоких температур. 2016. Т.54. №2. С.171-179. 9. Вайнштейн Л.А., Собельман И.И., Юков Е.А. Сечения возбуждения атомов и ионов электронами. - М.: Наука, 1973. - 143 с.

10. Гаврилова А.Ю., Скороход Е.П. Сечения и константы скоростей плазмохимических реакций инертных газов. – М.: Изд-во МАИ, 2011. – 192 с. 11. Miller M.H., Roig R.A. Transition Probabilities of Xe I and Xe II // Phys. Rev., 1973, A8, p. 480-487.

12. Davis C.C., King T.A. Upper Level Lifetimes of High-gain Laser Transitions in Xe // Phys. Letters, 1972, A39, p. 186-189.

13. Chen C.J., Garstang R.H. Note Transition Probabilities for Xe I // J. Quant. Spectr. Radiat. Transf., 1970, 10, p. 1347-1351.

14. Логинов А.В. Радиационные времена жизни уровней в спектрах атомов инертных газов и изоэлектронных ионов: дисс...канд. физ-мат наук. - Л.: 1975.

15. Aymar M., Coulombe M. Theoretical transition probabilities and lifetimes in Kr I and Xe I.// Atom. Data Nucl. Data Tabl, 1978, v.21, N 6, p.537-566.

16. Земцов Ю.К., Скороход Е.П. Оптические свойства ксеноновой плазмы. Силы осцилляторов и вероятности переходов Хе I // Межвузовский сборник трудов «Элементарные процессы при столкновениях атомных и молекулярных частиц». Чебоксары, ЧГУ, 1987. - С. 18-27.

17. Горчаков Л.В., Дёмкин В.П., Муравьёв И.И., Янчарина А.М. Излучение атомов инертных газов в электрических полях. - Томск, ТГПУ, 1984, - 167 с. 18. Груздев П.Ф. Вероятности переходов и радиационные времена жизни уровней атомов и ионов. - М.: Энергоатомиздат, 1990, - 223 с. 19. Wiese, W.L. and Martin, G.A. "Wavelengths and Transition Probabilities for Atoms and Atomic Ions, Part II: Transition Probabilities," United States National Bureau of Standards NSRDS-NBS 68, 1980.

- 20. Martin, P., Cabrera, J.A., and Campos, J., "TransitionProbabilities of 6p-nd (n=7,8,9) Lines of XeI," Phys Rev A, Vol 32, No 5, 1985, p 3110.
- 21. Peraza, C., Martin, P., and Campos, J., "Transition Probabilities of 6p-ns (n=7,8,9,10,I1,12,13) Lines of Xe('I), "JQSRT, Vol 46, 1991, p 455.
- 22. Sadeghi, N. and Sabbagh, J., "Collisional Transfer Between the 6s'[1/2]0j and 6p[1/2]] Xenon Levels," Phys Rev A, Vol 6, No 6, 1977, p 2336.
- 23.Гусев Ю.Г., Пильников А.В. Роль и место электроракетных двигателей в Российской космической программе // Труды МАИ, 2012, № 60: http://www.mai.ru/science/trudy/published.php?ID=35385
- 24.Потапенко М.Ю. Разработка и исследование стационарного плазменного двигателя с полым магнитным анодом малой мощности // Труды МАИ, 2014, № 74: http://www.mai.ru/science/trudy/published.php?ID=49261

25.Островский В.Г., Смоленцев А.А., Соколов Б.А. Опыт создания электроракетных двигателей большой мощности в ОАО «Ракетно-космическая корпорация «Энергия» имени С.П. Королева» // Труды МАИ, 2012, № 60: <u>http://www.mai.ru/science/trudy/published.php?ID=35380</u>