УДК 519.688+629.7.035.7

Проблемы моделирования течения в осевых вентиляторах аэродинамических труб

М.Х. Ву, С.А. Попов, Ю.А. Рыжов

Аннотация

Изучена возможность применения современного программного комплекса по вычислительной гидродинамике (CFD - Computational Fluid Dynamics) для решения задач проектирования осевых вентиляторов. Показано, что применение Realizable $k - \varepsilon$ модели турбулентности позволяет получить результаты лучше согласующиеся с данными эксперимента, чем для модели SST $k - \omega$. Исследовано влияние числа лопастей на расходно - напорные характеристики вентилятора заданной геометрии, а также применение второго рабочего колеса в целях повышения КПД осевого вентилятора.

Ключевые слова: осевой вентилятор; осредненные по Рейнольдсу уравнения Навье-Стокса; метод SIMPLEC, коэффициенты полного давления и производительности; КПД и коэффициент мощности вентилятора.

Введение

В настоящее время в связи с программой развития современной авиационной техники до 2020г. и выполнением проектов по созданию "Green Aircraft", "Самолет-2020", возникают новые задачи по отработке технологий активного управления обтеканием и ламинаризации течения в пограничном слое летательного аппарата 21 века. Помимо развития математических моделей [1, 2] и методов вычислительной гидродинамики [3] возникает остая необходимость в создании современных испытательных стендов – аэродинамических труб с низким уровнем шума, низкой степенью турбулентных пульсация скорости и давления в потоке, равномерным распределением всех газодинамических параметров в рабочей части установки. До настоящего момента в дозвуковых аэродинамических трубах такой поток создается при помощи осевых вентиляторов, расположенных за диффузором контура трубы [4]. Силовая установка таких труб, как правило, состоит из вентилятора и

1

электромотора постоянного тока. Отсутствие в прошлом электромоторов, сохраняющих высокий крутящий момент и мощность при малых часторах вращения, приводило к необходимости использования вентиляторов, работающих при высоких оборотах рабочего колеса. Такие вентяляторы имеют существенно высокий уровень шума и максимальный КПД, учывая типовое расположение вентилятора, не более 0.7 [4]. Шумы при этом негативно влияют на параметры турбулентности в рабочей части установки, провоцируя явление ламинарно-турбулентного перехода на обтекаемых поверхностях [5]. Широко известными примерами таких вентиляторов являются вентиляторы ЦАГИ ОВ-23, OB-109, OB-121 [6]. Несмотря на большой объем выполненных в ЦАГИ исследований [6, 7, 8], вопросы, связанные с детальным определением поля скорости и завихренности, турбулентных пульсаций за перечисленными вентиляторами не достаточно отражены в современной литературе в т.ч. и в связи с отсутствием в то время развитых CFD пакетов и методов эксперментальных исследований подобных PIV - методу [9]. Эта работа направлена на частичное устранение описанных пробелов.

Постановка задачи

В работе выполнено моделирование течений несжимаемой вязкой среды на основе осредненных по Рейнольдсу уравнений Навье-Стокса около нескольких характерных компоновок осевых вентиляторов. В качестве исходных компоновок рассмотрены вентилятор ОВ-23 ЦАГИ [6] и перспективный вентилятор из US патента [10]. Исследовались вопросы влияния числа лопастей рабочего колеса вентилятора при их равной площади, формы кока и применения второго рабочего колеса на расходно-напорные характеристики и КПД вентиляторов.

Было рассмотрено несколько задач:

– Первая задача: моделирование течения в проточной части вентилятора ЦАГИ ОВ-23. Вентилятор имел диаметр D = 0.7 м, относительный диаметр втулки $\overline{d} = 0.35$ и 4 лопасти, см. рис. 1. Вращение рабочего колеса осуществлялось с угловой скоростью 1200 об/мин.

Вторая задача: моделирование
 течения в проточной части
 модифицированного вентилятора,
 полученного на основе геометрии OB-23, с
 увеличенным в два раза числом лопастей

Рис.1. Аэродинамическая схема осевого вентилятора OB-23.

при уменьшении длины хорды лопасти в 2 раза. Угловая скорость оставалась без изменения и составляла также 1200 об/мин. При моделировании течения в проточной части вентиляторов ЦАГИ с высокой достоверностью вопроизводилась геометрия камеры с наддувом, используемой в ЦАГИ для исследований основных характеристик осевых вентиляторов и геометрия входного коллектора вместе с основными физическими параметрами в камере из работы [7].

– Третья задача: моделирование течения в проточной части перспективного вентилятора из патента [10]. Вентилятор с диаметром рабочего колеса также D = 0.7 м и относительным диаметром втулки $\vec{d} = 0.5$ имел 4 лопасти, вращающиеся с угловой скоростью 1200 об/мин. В этой задаче были рассмотрены случи вентялятора одноступенчатого (одно колесо) и двухступенчатого (два рабочих колеса) вентилятора, колеса которого вращались в одну сторону.

В рассмотренных задачах помимо анализа расходно-напорных характеристик были изучены вопросы достоверности результатов численного моделирования на основе сравнения полученных данных с имеющимся экспериментом, а также вопросы равномерности полей скорости и параметров турбулентности потока в проточной части канала вентиляторов.

Воздух полагался несжимаемой сплошной средой с постоянной вязкостью $\mu = 1.789 \cdot 10^{-5}$ кг/(м·с), поскольку максимальная окружная скорость не превышала значения 44 м/с. При решении задач использовалась сложная вращающаяся система координат,

3

изображенная на рис. 2. В качестве моделей турбулентности использовались SST $k - \omega$ и Realizable $k - \varepsilon$ модели.

Основные уравнения

При моделировании течения в окресности вентилятора использовалась подвижная вращающаяся система координат, приведенная на рис. 2. В общеи случае такая система может перемещаться в пространстве с линейной скоростью \vec{v}_t и вращаться относительно неподвижной системы с угловой скоростью $\vec{\omega}$. Начало подвижной системы находится на радиус-векторе \vec{r}_0 . Ось вращения определяется единичным вектором направления \vec{a} так, что вектор угловой скорости вращения равен

$$\vec{\omega} = \omega \cdot \vec{a}$$
.

Рис.2. Используемые системы координат.

Расчетная область определяется по отношению к подвижной системе координат и точки этой области задаются радиус-вектором \vec{r} . При этом скорость движения жидких частиц по отношению к подвижной системе координат определяется как

$$\vec{v}_r = \vec{v} - \vec{u}_r,$$

где $\vec{u}_r = \vec{v}_t + \vec{\omega} \times \vec{r}$ - скорость движущейся системы относительно неподвижной инерциальной системы отсчета, \vec{v} - абсолютая скорость жидкой частицы. В общем случае вектора $\vec{\omega}$ и \vec{v}_t могут быть функциями времени.

В рассматриваемых задачах подвижная система координат и расчетная область вводятся только в непосредственной близости от вращающегося рабочего колеса. Неподвижная часть расчетной области приходится на камеру, входной коллектор и спрямляющий аппарат, если он есть. При этом размеры рабочей камеры намного превосходят габариты подвижной части расчетной области. В этом случае для моделирования движения жидкости могут быть использованы уравнения Рейнольдса записанные как в отностительной, так и в абсолютной системе координат. Во втором случае эти уравнения выглядят следующим образом:

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \rho \vec{v}_r = 0 - \text{уравнение неразрывности;}$$
$$\frac{\partial}{\partial t} (\rho \vec{v}) + \vec{\nabla} \cdot (\rho \vec{v}_r \vec{v}) + \rho [\vec{\omega} \times (\vec{v} - \vec{v}_t)] = -\vec{\nabla} p + \vec{\nabla} \overline{\vec{\tau}} + \vec{F} - \text{уравнение переноса количества}$$

движения;

$$\frac{\partial}{\partial t}(\rho E) + \vec{\nabla} \cdot (\rho \vec{v}_r H + p \vec{u}_r) = \vec{\nabla} \cdot (\lambda \vec{\nabla} T + \overline{\vec{\tau}} \cdot \vec{v}) -$$
уравнение переноса энергии,

где
$$\overline{\overline{\tau}} = \mu \left[\left(\vec{\nabla} \otimes \vec{v} + \vec{\nabla} \otimes \vec{v}^T \right) - \frac{2}{3} \vec{\nabla} \cdot \vec{v} I \right]$$
 - тензор напряжений, λ - коэффициент

теплопроводности; $E = h - \frac{p}{\rho} + \frac{v^2}{2}$, $H = E + \frac{p}{\rho}$ - полные энергия и энтальпия единицы массы жидкости. В этой формулировке сила Кориолиса и центростремительное ускорение могут быть представлены одним слагаемым $\vec{\omega} \times (\vec{v} - \vec{v}_t)$.

Используемые модели турбудентности

В расчетах были использованы две модели турбулентности: SST $k - \omega$ [11], Realizable $k - \varepsilon$ модель [12]. Уравнения переноса кинетической энергии k турбулентности и диссипации для Realizable $k - \varepsilon$ модели в неподвижной системе координат выглядят следующим образом:

$$\begin{split} &\frac{\partial}{\partial t}(\rho k) + \vec{\nabla} \cdot \left(\rho k \vec{v}\right) = \vec{\nabla} \cdot \left[\left(\mu + \frac{\mu_t}{\sigma_k} \right) \vec{\nabla} \cdot k \right] + G_k - \rho \varepsilon \,, \\ &\frac{\partial}{\partial t}(\rho \varepsilon) + \vec{\nabla} \cdot \left(\rho \varepsilon \vec{v}\right) = \vec{\nabla} \cdot \left[\left(\mu + \frac{\mu_t}{\sigma_\varepsilon} \right) \vec{\nabla} \cdot \varepsilon \right] + \rho C_1 S \varepsilon - \rho C_2 \frac{\varepsilon^2}{k + \sqrt{v\varepsilon}} \,, \end{split}$$

где

$$C_1 = \max\left[0.43, \frac{\eta}{\eta+5}\right], \ \eta = S\frac{k}{\varepsilon}, \ S = \sqrt{2S_{ij}S_{ij}}.$$

В этих уравнениях слагаемое $G_k = \mu_t S^2$ отвечает за генерацию турбулентной кинетической энергии за счет градиента осредненной скорости потока, C_1 и C_2 - постоянные модели, σ_k и σ_{ε} - турбулентные числа Прандтля для k и ε , соответственно.

Как и в других моделях, коэффициент турбулентной вязкости вычисляется из

$$\mu_t = \rho C_\mu \, \frac{k^2}{\varepsilon}$$

Различие между Realizable $k - \varepsilon$ моделью и стандартной моделью, а также моделью RNG заключается в том, что коэффициент C_{μ} более не является постоянным, а вычисляется с помощью следующих соотношений:

$$C_{\mu} = \frac{1}{A_0 + A_S \frac{kU^*}{\varepsilon}},$$
 где $U^* = \sqrt{S_{ij}S_{ij} + \tilde{\Omega}_{ij}\tilde{\Omega}_{ij}}$ и

$$\widetilde{\Omega}_{ij} = \Omega_{ij} - 2\varepsilon_{ijk}\omega_k;$$
$$\Omega_{ij} = \overline{\Omega}_{ij} - \varepsilon_{ijk}\omega_k,$$

где $\overline{\Omega}_{ij}$ - тензор осредненной скорости вращения в движущейся системе отсчета с угловой скоростью ω_k . Недостающие константы модели A_0 , A_S и др. см. [12].

Видно, что коэфффициент C_{μ} является функцией компонент тензора напряжений и осредненной скорости вращения, угловой скорости вращения системы координат, а также параметров турбулентности потока k и ε .

Метод решения

Для случая установившегося течения жидкости уравнение неразрывности и уравнение переноса количества движения имеют вид:

$$\vec{\nabla} \cdot \rho \vec{v}_r = 0,$$

$$\vec{\nabla} \cdot (\rho \vec{v}_r \vec{v}) + \rho [\vec{\omega} \times (\vec{v} - \vec{v}_t)] = -\vec{\nabla} p + \vec{\nabla} \overline{\vec{\tau}} + \vec{F}.$$

Проинтегрировав эти уравнения по контрольному объему V,

$$\begin{split} &\int_{V} \vec{\nabla} \cdot \rho \, \vec{v}_{r} dV = 0 \,, \\ &\int_{V} \vec{\nabla} \cdot (\rho \, \vec{v}_{r} \, \vec{v}) dV + \int_{V} \rho [\vec{\omega} \times (\vec{v} - \vec{v}_{t})] dV = -\int_{V} \vec{\nabla} p dV + \int_{V} \vec{\overline{\tau}} \, dV + \int_{V} \vec{F} \, dV \end{split}$$

и воспользовавшись формулой Остроградского-Гаусса, получим:

$$\oint \rho \,\vec{v}_r \vec{n} \, dA = 0 \,, \tag{1}$$

$$\oint \rho \,\vec{v}_r \,\vec{v} \,\vec{n} \,dA + \int_V \rho \left[\vec{\omega} \times \left(\vec{v} - \vec{v}_t\right)\right] dV = -\oint \rho I \,\vec{n} \,dA + \oint \overline{\overline{\tau}} \,\vec{n} \,dA + \int_V \vec{F} \,dV \,.$$
⁽²⁾

Здесь A - поверхность, ограничивающая данный обем V, \vec{n} - вектор внешних нормалей к поверхности, I - единичная матрица. Аналогичные соотношения могут быть получены и для уравнений переноса параметров турбулентности k и ε .

Чтобы получить дискретный аналог уравнения (1) оно может быть приближенно проинтегриовано по контрольному объему, см. рис. 3,

$$\sum_{f}^{N_{faces}} J_f A_f = 0, \qquad (3)$$

где $J_f = \rho v_{rn_f}$ - массовый расход через грань f, v_{rn_f} - проекция вектора скорости \vec{v}_r на направление нормали \vec{n} к грани f, N_{faces} - число поверхностей, охватывающих контрольный объем V.

Рис.3. Контрольный объем.

Так же как и для уравнения (1), используя теорему о среднем, может быть подучен дискретный аналог уравнения переноса импульса (2). Например, если $\vec{v} = \vec{i}u + \vec{j}v + \vec{k}w$ и $\vec{n} = \vec{i}n_x + \vec{j}n_y + \vec{k}n_z$, то для проекции этого уравнения на ось *x* будем иметь:

$$\sum_{f}^{N_{faces}} \rho_{f} v_{rn_{f}} u_{f} A_{f} = -\sum_{f}^{N_{faces}} p_{f} n_{x} A_{f} + \sum_{f}^{N_{faces}} (\overline{\tau}_{xx} n_{x} + \overline{\tau}_{xy} n_{y} + \overline{\tau}_{xz} n_{z})_{f} A_{f} - \rho [\vec{\omega} \times (\vec{v} - \vec{v}_{t})]_{x} V + F_{x} V.$$

$$($$

Аналогичным образом могут быть преобразованы уравнения для параметров турбулентности потока *k* и *ε*.

Дискретный аналог уравнения переноса импульса (2) содержит неизвестные компоненты проекций скорости в центрах ячеек, а также неизвестные значения этих величин в соседних ячейках u_k . Это уравнение, вообще говоря, нелинейно относительно этих переменных. В линеаризованной форме проекция этого уравнения на ось x (4) может быть записано в общем виде

$$a_{c_0} u = \sum_k a_{c_k} u_{c_k} + \sum_f p_f n_x A_f + S, \qquad (5)$$

Индекс "k" относится к соседним ячейкам, a_{c_0} и a_{c_k} - линеаризованные коэффициенты для и и u_{c_k} , p_f - давление на поверхности контрольной ячейки, S - некоторая константа. Число соседей для каждой ячейки зависит от топологии сетки, но, как правило, оно равно числу граней прилегающих ячеек (кроме граничных ячеек). Аналогичные уравнения можно записать для каждой ячейки в сетке. Это приводит к системе алгебраических уравнений с разреженной матрицей коэффициентов. Полученная система уравнений решается с помощью итерационного метода Гаусса-Зейделя в сочетании с алгебраическим многосеточным (AMG) методом [13].

Если известны поле давления и потоки массы через грани ячеек, уравнение (5) может быть решено относительно неизвестных компонент вектора сткорости. Однако, поле давления и потоки массы не известны априори и должны быть получены в процессе решения задачи. В используемом расчетном методе давление и скорость хранятся в центрах каждой ячейки. При этом необходимы значение давления на гранях ячеек, как показано на рис. 3. Эти неизвестные величины определяются посредством интерполяции по параметрам в центрах ячейках расчетной сетки. В первом приближении значение давления на гранях ячеек расчетной сетки может быть получено с использованием весовых коэффицтентов из уравнения переноса импульса, например как

$$p_f = \frac{p_{c_0} / a_{c_0} + p_{c_1} / a_{c_1}}{1 / a_{c_0} + 1 / a_{c_1}}.$$
(6)

Такой способ работает до тех пор, пока давление между центорами соседних ячеек изменяется досточочно гладко. Для определения массового расхода через грани ячеек сетки используется процедура, аналогичная предложенной в работе Рхи и Чоу [14]. В результате ее применения значения скорости в центрах смежных ячеек берутся с некоторыми весовыми коэффициентами, также входящими в уравнение переноса импульса.

$$J_{f} = \rho_{f} \frac{a_{c_{0}} v_{n,c_{0}} + a_{c_{1}} v_{n,c_{1}}}{a_{c_{0}} + a_{c_{1}}} + d_{f} \left[\left(p_{c_{0}} + \vec{\nabla} p_{c_{0}} \vec{r}_{0} \right) - \left(p_{c_{1}} + \vec{\nabla} p_{c_{1}} \vec{r}_{1} \right) \right] = \hat{J}_{f} + d_{f} \left(p_{c_{0}} - p_{c_{1}} \right)$$
(7)

При использовании простой линейной интерполяции значения массовых расходов будут нефизичными из-за несогласованности этих значений с полем давления. Здесь p_{c_0} , p_{c_1} и v_{n,c_0} , v_{n,c_1} - давление и нормальные составляющие скорости с обеих сторон от поверхности f и \hat{J}_f содержит влияние скорости в этих ячейках (рис. 3). Множитель d_f является функцией осредненных коэффициентов a_{c_k} по прилегающим к поверхности f ячейкам.

Согласование массовых расходов с полем давления осуществляется с привлечением уравнения переноса массы. В работе использовался так назывемый полу-неявный метод для связанных через давление уравнений SIMPLE [15]. Если уравнение переноса импульса (5) решено на основе приближенного поля давления p^* , результирующий массовый расход J_f^* , вычисляемый по формуле (7)

$$J_{f}^{*} = \widehat{J}_{f}^{*} + d_{f} \left(p_{c_{0}}^{*} - p_{c_{1}}^{*} \right),$$

не удовлетворяет уравнению непрерывности. Добавим к расходу J_f^* некоторую поправку J_f' , чтобы результирующий расход

$$J_f = J_f^* + J_f' \tag{8}$$

удовлетворял уравнению неразрывности. SIMPLE алгоритм постулирует, что корректирующий расход J'_f записывается в виде:

$$J'_{f} = d_{f} \left(p'_{c_{0}} - p'_{c_{1}} \right), \tag{9}$$

где p' - коррекция давления $p = p^* + p'$. После подстановки уравнений (8) и (9) в дискретный аналог уравнения неразрывности (3) получается дискретное уравнение для коррекции давления

$$a_{c_0} p' = \sum_k a_{c_k} p'_{c_k} + b, \qquad (10)$$

где источниковый член уравнения $b = \sum_{f}^{N_{faces}} J_{f}^{*} A_{f}$. Как только решение уравнения (10)

получено, давление в ячейках корректируется

$$p = p^* + \alpha_p p' \tag{11}$$

 α_p - коэффициент нижней релаксации и

$$J_{f} = J_{f}^{*} + d_{f} \left(p_{c_{0}}^{\prime} - p_{c_{1}}^{\prime} \right).$$
(12)

В используемом в настоящей работе методе SIMPLEC [16] множитель d_f является функцией от $\left(\overline{a_{c_0} - \sum_k a_{c_k}}\right)$.

Полученные результаты и их анализ

При решении первой задачи исследовались вопросы сеточной сходимости, на основе чего было принято решение ограничиться общим числом расчетных ячеек от 2 до 4 млн. При этом сетка сгущалась в непосредственной близости от граничных поверхностей проточного канала и около лопастей рабочего колеса. Твердотельная модель рабочего колеса вентилятора ЦАГИ ОВ-23 и фрагмент расчетной сетки приведены на рис. 4 и 5.

Рис.4. Твердотельная модель вентилятора OB-23.

Характерная величина безразмерного параметра y^+ , характеризующего размер пристеночных ячеек, располагалась в диапазоне $10 < y^+ < 200$, что является допустимым и соответствует области логарифмического закона стенки. Картина распределения линий тока в окрестности рабочего колеса вентилятора представлена на рис. 6. Эта картина дана в области, непосредственно прилегающей к вентилятору, без него (вентилятор есть, но невидим) и в его присутствии.

Рис.6. Картина линий тока в окрестности рабочего колеса ОВ-23.

Из приведенного распределения заметно, что возмущения от рабочего колеса вентилятора распространяются как вниз по потоку, так и в обратную сторону, что является характерным моментом для всех дозвуковых течений среды.

Распределение осевой и тангенциальной компонент скорости вдоль радиуса, перпендикулярного оси симметрии вентилятора в двух сечениях, расположенных за рабочим колесом на расстояниях х=0.1 м и х=0.15 м представлены на рис. 7 и 8. На рис. 7 заметно значительное нарушение равномерности осевой компоненты скорости вблизи втулки рабочего колеса вентилятора.

Распределение радиальной компоненты скорости и кинетической энергии турбулентности в тех же двух сечениях, расположенных за рабочим колесом вентилятора, представлены на рис. 9 и 10. При этом значительный прирост кинетической энергии турбулентности наблюдается в тех же местах, где в большей степени возмущена осевая компонента скорости

в проточной части канала вентилятора. Тангенциальная компонента скорости изменяется согласованно между двумя сечениями, а вот радиальная компонента меняет знак.

Аналогичные характеристики для модифицированного под условия второй задачи вентилятора представлены на рис. 11 – 17. Расчетная сетка также имеет достаточное разрешение (рис. 12) вблизи лопаток измененного вентилятора.

Рис.11. Твердотельная модель модифицированного вентилятора.

Рис.12. Фрагмент расчетной сетки в окрестности лопасти модифицированного вентилятора.

Из рис. 13, на котором представлена картина линий тока, заметно значительно меньшее воздействие вентилятора на входящий поток в области входного коллектора, а также в спутном следе за колесом вентилятора.

Рис.13. Картина линий тока в окрестности рабочего колеса модифицированного вентилятора. Распределение осевой, тангенциальной и радиальной компонент скорости вдоль радиуса *r*, а также кинетической энергии турбулентности потока в двух сечениях, расположенных за рабочим колесом вентилятора на расстояниях х=0.1 м и х=0.15 м представлены на рис. 14 - 17. Из рис. 14 и 15 заметно более равномерное распределение осевой компоненты вектора скорости и существенно, почти в два раза меньшие, максимальные значения тангенциальной компоненты скорости.

Рис.15. Распределение тангенциальной компоненты скорости Vt.

В то же самое время профиль радиальной составляющей вектора скорости изменяется более согласованно между двумя рассматриваемыми сечениями, а кинетическая энергия турбулентности имеет два выраженных максимума, один - в окрестности втулки вентилятора, а второй на внешних стенках проточного канала, в котором располагался вентилятор.

۵

Рис.17. Распределение кинетической энергии турбулентности k.

По результатам численного моделирования были также построены интегральные характеристики исследуемых вентиляторов, такие как зависимости коэффициента полного давления ψ вентилятора коэффициента его производительности φ , определяемые по следующим формулам [7]:

$$\varphi = \frac{Q}{\mu F}; \ \psi = \frac{p_V}{\rho u^2}. \tag{13}$$

Здесь Q - расход воздуха через вентилятор $\left[\frac{m^3}{ce\kappa}\right]$, $u = \frac{\pi Dn}{60} \left[\frac{m}{ce\kappa}\right]$ - окружная скорость

вентилятора, *n* - частота вращения рабочего колеса вентилятора [об/мин], *D* - диаметр вентилятоа [м], *F* - площадь поперечного сечения канала, где вентилятор располагается [*m*²], *p_V* - разность полных давлений непосредствено за и перед вентилятором [Па].

Также были определены η - коэффициент полезного действия (КПД) веньтилятора и коэффициент мощности λ, расчитывающиеся по следующим соотношениям [7]:

$$\eta = \frac{p_V Q}{N}; \ \lambda = \frac{N}{\rho F u^3},\tag{14}$$

где N - затрачиваемая мощность $\left\lfloor \frac{H M}{c e \kappa} \right\rfloor$.

Из полученных и приведенных ниже на рис.18 - 20 графиков видно, что Realizable $k - \varepsilon$ модель турбулентности (на рис. обозначена как "rke") для коэффициента полного давления дает более точные результаты по сравнению с моделью SST $k - \omega$ (обозначена как "SSTkw"), а потому она предполагается для решения последующих задач. Разрыв на эжкспериментально кривой вентилятора OB-23 (4 лопасти) в окрестноти точки $\varphi = 0.15$ связан с явлением срыва потока с лопастей вентилятора. При этом левая ветвь

экспериментальной кривой соответствует области орывного обтекания. При уменьшении хорды лопастей вентилятора в 2 раза и увеличении числа лопастей в 2 раза значительно уменьшается и коэффициент полного давления вентилятора. Это уменьшение происходит практически при равном динамическом напоре, что видно из сопоставления профилей осевой скорости обоих вентиляторов (рис. 7 и 14). Отсюда можно сделать вывод, что увеличение числа лопастей вентилятора при равной их суммарной площади выравнивает поле скорости и приводит к значительному, в данном случае примерно в 1.3 раза, снижению статического напора вентилятора. Коэффициент полезного действия вентилятора при этом падает, см. рис. 19. На рис. 19 обозначение "_4" соответствует вентилятору с четырьмя лопастями, а обозначение "_8" – модифицированному вентилятору с Восьмью лопастями. На рис. 20 представлены результаты только для исходного вентилятора OB-23 с четырьмя лопастями.

Рис.18. Зависимость коэффициента полного давления от коэффициента производительности вентилятора.

КПД вентилятора и коэффициент мощности, полученные с использованием модели SST $k - \omega$, лучше согласуются с данными эксперимента [6], в том числе и в области отрывных течений $\varphi < 0.15$. Но общее расхождение между расчетными данными по исследуемым моделям турбулентности невелико, особенно в рабочей области течений.

Рис.19. Зависимость коэффициента полезного действия от коэффициента производительности вентилятора.

Рис.20. Зависимость коэффициента мощности от коэффициента производительности вентилятора.

Далее приведены результаты решения третьей задачи по моделированию течения в проточной части перспективного вентилятора из патента [10]. Твердотельные модели рабочих колес исследуемых вентиляторов и фрагменты расчетной сетки приведены на рис. 21, 22 и 28, 29. Рассматриваемый вентилятор существенно отличается от OB-23 как формой кока, диаметром втулки, профилем, так и формой лопасти. При этом, как видно из рис. 23, 24 и 30, 31, несмотря на более затупленную форму кока, этот вентилятор значительно менее возмущает набегающий поток и дает более равномерный, но наклонный профиль осевой

скорости. Увеличение величины средней осевой скорости вполне предсказуемо в силу большего поджатия проточного сечения вентилятора. В данном случае интересно, что использование более затупленной формы кока не привело к ухудшению картины его обтекания.

Одноступенчатый вентилятор.

Рис.21. Твердотельная модель вентилятора с одним рабочим колесом.

Рис.22. Фрагмент расчетной сетки в окрестности лопасти вентилятора.

Рис.23. Картина линий тока в окрестности рабочего колеса вентилятора с одним рабочим колесом.

Распределение осевой, тангенциальной и радиальной компонент скорости вдоль радиуса *r*, а также кинетической энергии турбулентности потока в двух сечениях, расположенных за рабочим колесом вентилятора на расстояниях х=0.1 м и х=0.15 м представлены на рис. 24 – 27 и 31 - 34.

Рис.24. Распределение осевой компоненты скорости Vx.

Рис.25. Распределение тангенциальной компоненты скорости Vt.

Рис.26. Распределение радиальной компоненты скорости Vr.

Рис.27. Распределение кинетической энергии турбулентности k.

Рис.28. Твердотельная модель вентилятора с двумя рабочими колесами.

Рис.29. Фрагмент расчетной сетки в окрестности лопастей вентилятора.

Двухступенчатый вентилятор.

Рис.30. Картина линий тока в окрестности рабочего колеса вентилятора с двумя рабочими колесами

Рис.31. Распределение осевой компоненты скорости Vx.

Рис.34. Распределение кинетической энергии турбулентности k.

19

Расходно-напорная характеристика исследуемых вентиляторов представлена на рис. 35. Исследуемый вентилятор даже в компоновке с одним рабочим колесом имеет примерно на 40% более высокие значения коэффициента полного давления. Применение второго рабочего колеса дополнительно увеличивает полный напор, создаваемый вентилятором, но при этом значительно увеличиваются и возмущения, вносимые им в поток. Увеличивается примерно на 10% и КПД вентилятора, см. рис. 36.

Рис.35. Зависимость коэффициента полного давления от коэффициента производительности.

Рис.36. Зависимость коэффициента полезного действия от коэффициента производительности вентилятора.

Заключение

Выполнена серия численных исследований нескольких характерных компоновок вентиляторов. Проведено тестирование используемой методики и программных средств, подтвердившее достоверность полученных результатов. В результате решенных задач установлено:

- Увеличение числа лопастей вентилятора при их постоянной суммарной площади приводит к уменьшению статического напора вентилятора при неизменной величине его динамического напора, что естественным образом приводит к уменьшению коэффициента полезного действия вентилятора.
- Уменьшение площади, формы проточного канала вентилятора (за счет изменения формы кока) и увеличение числа рабочих колес не принесло существенных улучшений в его характеристики.

В дальнейшем целесообразно выполнить серию исследований, направленных на решение задачи о снижении числа оборотов вентилятора при неизменной величине создаваемого им динамического напора и заданного полного давления вентилятора.

Библиографический список

- 1. *Struchtrup H., Torrilhon M.* Regularization of Grad's 13-Moment-Equations: Derivation and Linear Analysis, Phys. Fluids 15/9, (2003), pp.2668-2680.
- 2. *Никитченко Ю.А.* Система моментных уравнений для многоатомных газов. Полет. М.: Изд-во Машиностроение, 2010, N 11, C. 43-51.
- 3. *Попов С.А.* Моделирование течений сжимаемого газа на основе метода полных дифференциалов. Математическое моделирование, 2005, том 17, N 3, C.99-119.
- 4. Попов С.А., Игнатов Н.Е. Проект вертикальной аэродинамической трубы ВТ-1 МАИ, Вестник МАИ, Журнал «Вестник Московского авиационного института» № 5, 2009 г., т. 16, с.5-16.
- 5. *Горев В.Н., Попов С.А., Козлов В.В.* Экспериментальное исследование возможности применения акустики для управления срывом потока на крыле летательного аппарата. ЭЖ Труды МАИ, №46, 2011, www.mai.ru/science/trudy.
- 6. *Брусиловский И.В.* Аэродинамические схемы и характеристики осевых вентиляторов, ЦАГИ. М.: Недра, 1978, 195с.
- 7. *Брусиловский И.В.* Аэродинамика осевых вентиляторов. М.: Машиностроение, 1984, 240с.
- Брусиловский И.В. Аэродинамический расчет осевых вентиляторов. М.: Машиностроение, 1986, 285с.
- Харитонов А.М. Техника и методы аэрофизического эксперимента. Новосибирск: НГТУ. Ч.2: Методы и средства аэрофизических измерений. – 2007, 455 с.
- 10. *P.J. Bradbury et al.* Axial Flow Fun Having Counter-Rotating Dual Impeller Blade Arrangement. United State Patent No US 6.565.334 B1, 20.05.2003, 41p.
- F.R. Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal. 32(8). 1598–1605. August 1994.
- T.-H. Shih, W.W. Liou, A. Shabbir, Z. Yang, and J. Zhu. A New k − ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation. -Computers Fluids. 24(3). 227–238. 1995.
- B.R. Hutchinson and G.D. Raithby. A Multigrid Method Based on the Additive Correction Strategy. - Numerical Heat Transfer. 9. 511–537. 1986.
- C.M. Rhie and W.L. Chow. Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation. - AIAA Journal. 21(11). 1525–1532. November 1983.

- S.V. Patankar and D.B. Spalding. A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows. - International Journal of Heat and Mass Transfer, 15, 1787-1806, 1972.
- 16. J.P. Vandoormaal and G.D. Raithby. Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows. Numer.Heat Transfer, 7, 147–163, 1984.

Сведения об авторах

Ву Мань Хиеу, аспирант Московского авиационного института (национального исследовательского университет), тел.: +7 967-068 20 66, e-mail:<u>manhhieu1611@mail.ru</u> Попов Сергей Александрович, доцент Московского авиационного института (национального исследовательского университета, к.ф.-м.н.,тел.: 499-728 10 23, e-mail: <u>flowmech@mail.ru</u> Рыжов Юрий Алексеевич, профессор Московского авиационного института (национального исследовательского университета, академик РАН,д.т.н., тел.: +7 495-760 60 27